
Incremental Linearization for

Satisfiability and Verification

Modulo Nonlinear Arithmetic and

Transcendental Functions

Ahmed Irfan





DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE

ICT International Doctoral School

Incremental Linearization for

Satisfiability and Verification

Modulo Nonlinear Arithmetic and

Transcendental Functions

Ahmed Irfan

Advisor

Prof. Alessandro Cimatti

Fondazione Bruno Kessler

Co-Advisors

Prof. Roberto Sebastiani Dr. Alberto Griggio

Università degli Studi di Trento Fondazione Bruno Kessler

April 2018





Abstract

Satisfiability Modulo Theories (SMT) is the problem of deciding the sat-

isfiability of a first-order formula with respect to some theory or combi-

nation of theories; Verification Modulo Theories (VMT) is the problem of

analyzing the reachability for transition systems represented in terms of

SMT formulae. In this thesis, we tackle the problems of SMT and VMT

over the theories of polynomials over the reals (NRA), over the integers

(NIA), and of NRA augmented with transcendental functions (NT A).

We propose a new abstraction-refinement approach called Incremental Lin-

earization. The idea is to abstract nonlinear multiplication and transcen-

dental functions as uninterpreted functions in an abstract domain limited

to linear arithmetic with uninterpreted functions. The uninterpreted func-

tions are incrementally axiomatized by means of upper- and lower-bounding

piecewise-linear constraints. In the case of transcendental functions, par-

ticular care is required to ensure the soundness of the abstraction. The

method has been implemented in the MathSAT SMT solver, and in the

nuXmv VMT model checker. An extensive experimental evaluation on a

wide set of benchmarks from verification and mathematics demonstrates

the generality and the effectiveness of our approach.

Moreover, the proposed technique is an enabler for the (nonlinear) VMT

problems arising in practical scenarios with design environments such as

Simulink. This capability has been achieved by integrating nuXmv with

Simulink using a compilation-based approach and is evaluated on an

industrial-level case study.



Keywords

[SMT, VMT, Satisfiability, Formal Verification, Model Checking, Nonlinear

Arithmetic, Transcendental Functions, Automated Reasoning]



Contents

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . 6

I Background and State of the Art 9

2 Technical Background 11

3 Satisfiability Modulo Theories 19

3.1 The SAT Problem . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 The SMT Problem . . . . . . . . . . . . . . . . . . . . . . 20

3.3 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Verification Modulo Theories 33

4.1 Symbolic Transition Systems . . . . . . . . . . . . . . . . . 33

4.2 The VMT Problem . . . . . . . . . . . . . . . . . . . . . . 34

4.3 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Systems Design and Verification Tools 41

5.1 Hierarchical Decomposition-based Design . . . . . . . . . . 42

5.2 Design Languages and Tools . . . . . . . . . . . . . . . . . 44

5.3 Verification Support . . . . . . . . . . . . . . . . . . . . . 49

i



II Satisfiability Modulo Nonlinear Arithmetic and Transcen-

dental Functions 51

6 SMT via Incremental Linearization 55

6.1 Incremental Linearization for SMT(NT A) . . . . . . . . . 56

6.1.1 The Main Procedure . . . . . . . . . . . . . . . . . 57

6.1.2 Abstraction Refinement and Spuriousness Check . . 59

6.2 Abstraction Refinement . . . . . . . . . . . . . . . . . . . 62

6.2.1 Refinement for NRA . . . . . . . . . . . . . . . . . 62

6.2.2 Refinement for NT A . . . . . . . . . . . . . . . . . 68

6.3 Spuriousness Check and Detecting Satisfiability . . . . . . 80

6.3.1 Finding Rational Models for NRA . . . . . . . . . 80

6.3.2 Detecting Satisfiability with NT A . . . . . . . . . 83

6.4 Proofs of Correctness . . . . . . . . . . . . . . . . . . . . . 86

6.5 Modifications for SMT(NIA) . . . . . . . . . . . . . . . . 88

6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Implementation and Experimental Evaluation 95

7.1 Implementation Details . . . . . . . . . . . . . . . . . . . . 96

7.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ii



III Verification Modulo Nonlinear Arithmetic and Transcen-

dental Functions 133

8 VMT via Incremental Linearization 137

8.1 Incremental Linearization for VMT(NT A) . . . . . . . . . 138

8.1.1 The Main Procedure . . . . . . . . . . . . . . . . . 140

8.1.2 Spuriousness Check and Abstraction Refinement . . 142

8.2 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . 145

8.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 146

9 Implementation and Experimental Evaluation 147

9.1 Implementation Details . . . . . . . . . . . . . . . . . . . . 148

9.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 150

9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

iii



IV Verification in Systems Design Automation 177

10 Simulink to nuXmv 181

10.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 182

10.2 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . 184

10.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 187

11 Verilog to nuXmv 189

11.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 189

11.2 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . 190

11.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 194

12 Implementation and Experimental Evaluation 197

12.1 Simulink to nuXmv . . . . . . . . . . . . . . . . . . . . . 197

12.1.1 Implementation . . . . . . . . . . . . . . . . . . . . 197

12.1.2 Experimental Evaluation . . . . . . . . . . . . . . . 197

12.2 Verilog to nuXmv . . . . . . . . . . . . . . . . . . . . . 202

12.2.1 Implementation . . . . . . . . . . . . . . . . . . . . 202

12.2.2 Experimental Evaluation . . . . . . . . . . . . . . . 204

13 Thesis Conclusions 211

13.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . 213

Bibliography 215

iv



List of Tables

4.1 IC3 Modulo Theories – Overview . . . . . . . . . . . . . . 38

5.1 Overview of the features provided by the design languages

and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.1 Summary of SMT(NRA) experimental results . . . . . . . 102

7.2 Summary of SMT(NT A) experimental results . . . . . . . 115

7.3 Summary of SMT(NIA) experimental results . . . . . . . 129

9.1 Summary of VMT(NRA) experimental results . . . . . . 161

9.2 Summary of VMT(NT A) experimental results . . . . . . . 174

v





List of Figures

3.1 An abstract procedure for SMT solving using the

lazy/DPLL(T ) approach . . . . . . . . . . . . . . . . . . . 20

5.1 An example of hierarchical decomposition . . . . . . . . . 43

6.1 The main procedure for solving SMT(NT A) via abstraction

to SMT(UFLRA) and refinement . . . . . . . . . . . . . . 58

6.2 The main procedure for spuriousness check and refinement 60

6.3 Multiplication function and tangent plane . . . . . . . . . 63

6.4 The refinement UFLRA constraint schemata for multipli-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.5 An example of instantiation of constraint schemata for the

multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.6 Refinement of transcendental functions . . . . . . . . . . . 69

6.7 Piecewise-linear refinement illustration . . . . . . . . . . . 71

6.8 Polynomial bounds computation for transcendental functions 71

6.9 Piecewise-linear refinement for the transcendental function

tf(x) at point c . . . . . . . . . . . . . . . . . . . . . . . . 73

6.10 Basic constraint schemata for the exponential function . . 75

6.11 Basic constraint schemata for sin function . . . . . . . . . 79

6.12 An incomplete procedure using an SMT(UFLRA) solver . 81

6.13 Detecting satisfiability using an SMT(LRA) solver . . . . 83

vii



6.14 SMT(NIA) modifications – abstraction to SMT(UFLIA)

and refinement . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1 Illustration of the tangent lemma frontier strategy . . . . . 98

7.2 Survival plots for SMT(NRA) benchmarks . . . . . . . . . 104

7.2 Survival plots for SMT(NRA) benchmarks . . . . . . . . . 105

7.3 Scatters plots for SMT(NRA) benchmarks . . . . . . . . . 106

7.3 Scatters plots for SMT(NRA) benchmarks . . . . . . . . . 107

7.3 Scatters plots for SMT(NRA) benchmarks . . . . . . . . . 108

7.4 Survival plots for SMT(NRA) benchmarks excluding

MetiTarski . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.4 Survival plots for SMT(NRA) benchmarks excluding

MetiTarski . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Scatters plots for SMT(NRA) benchmarks excluding

MetiTarski . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5 Scatters plots for SMT(NRA) benchmarks excluding

MetiTarski . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5 Scatters plots for SMT(NRA) benchmarks excluding

MetiTarski . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.6 Survival plots for SMT(NT A) – unbounded benchmarks . 116

7.6 Survival plots for SMT(NT A) – unbounded benchmarks . 117

7.7 Scatters plots for SMT(NT A) – unbounded benchmarks . 118

7.8 Survival plots for SMT(NT A) – bounded benchmarks . . 119

7.8 Survival plots for SMT(NT A) – bounded benchmarks . . 120

7.9 Scatters plots for SMT(NT A) – bounded benchmarks . . 121

7.10 Survival plots for SMT(NIA) benchmarks . . . . . . . . . 123

7.10 Survival plots for SMT(NIA) benchmarks . . . . . . . . . 124

7.11 Scatters plots for SMT(NIA) benchmarks . . . . . . . . . 125

7.11 Scatters plots for SMT(NIA) benchmarks . . . . . . . . . 126

viii



7.11 Scatters plots for SMT(NIA) benchmarks . . . . . . . . . 127

7.11 Scatters plots for SMT(NIA) benchmarks . . . . . . . . . 128

8.1 Solving VMT(NT A) via SMT(NT A)-based procedures . 139

8.2 Solving VMT(NT A) via incremental linearization . . . . . 140

8.3 Verification of NT A transition systems via abstraction to

UFLRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.4 Refinement of the UFLRA transition system . . . . . . . 142

9.1 Reducing the constraints needed for refinement . . . . . . 149

9.2 Survival plots for VMT(NRA) benchmarks . . . . . . . . 154

9.2 Survival plots for VMT(NRA) benchmarks . . . . . . . . 155

9.3 Scatters plots of VMT(NRA) benchmarks . . . . . . . . . 156

9.3 Scatters plots of VMT(NRA) benchmarks . . . . . . . . . 157

9.3 Scatters plots of VMT(NRA) benchmarks . . . . . . . . . 158

9.3 Scatters plots of VMT(NRA) benchmarks . . . . . . . . . 159

9.3 Scatters plots of VMT(NRA) benchmarks . . . . . . . . . 160

9.4 Survival plots for VMT(NT A) – unbounded benchmarks . 163

9.4 Survival plots for VMT(NT A) – unbounded benchmarks . 164

9.5 Scatters plots of VMT(NT A) – unbounded benchmarks . 165

9.5 Scatters plots of VMT(NT A) – unbounded benchmarks . 166

9.5 Scatters plots of VMT(NT A) – unbounded benchmarks . 167

9.6 Survival plots for VMT(NT A) – bounded benchmarks . . 168

9.6 Survival plots for VMT(NT A) – bounded benchmarks . . 169

9.7 Scatters plots of VMT(NT A) – bounded benchmarks . . . 170

9.7 Scatters plots of VMT(NT A) – bounded benchmarks . . . 171

9.7 Scatters plots of VMT(NT A) – bounded benchmarks . . . 172

9.7 Scatters plots of VMT(NT A) – bounded benchmarks . . . 173

10.1 Simulink: difference between fixed-step and variable-step 182

10.2 Simulink simulation solver configuration . . . . . . . . . . 182

ix



10.3 Simulink assertion block . . . . . . . . . . . . . . . . . . 184

10.4 Simulink to SMV via Embedded Coder– detailed flow . 185

10.5 Simulink Embedded Coder: Form of the C code . . . . 186

11.1 Verilog2SMV architecture and verification tool-chain . . 191

11.2 Specifying property in Verilog design . . . . . . . . . . . 192

11.3 nuXmv translation for the Verilog design shown in Fig. 11.2193

12.1 TCM: top level . . . . . . . . . . . . . . . . . . . . . . . . 199

12.2 TCM with assumes and assertions – top level . . . . . . . 200

12.3 TCM with assumes and assertions – controls component . 201

12.4 Accumulated plot for benchmarks with memories and registers206

12.5 Accumulated plot for benchmarks with registers only . . . 207

x



Chapter 1

Introduction

Hardware and software systems have become not only a fundamental com-

ponent in safety- and mission-critical applications but also an essential

component of human lives. Their increasing use comes with many chal-

lenges: demand for additional functionalities, lower development and main-

tenance cost, shorter time to market, and correct operation are few ex-

amples. In fact, ensuring correctness of systems is extremely important.

These challenges have led to the use of model-based design methodologies

with the support of formal verification tools to ensure correctness (or to

find bugs). Nowadays, several design tools, as well as verification tools,

are available. A tremendous amount of progress has been made over the

years in dealing with the challenges of design tools and in improving the

efficiency of verification tools. However, reducing the gap between the two

remains a challenge.

Verification tools are based on mathematical logic as the calculus of

computation. Logic formulae are used to describe states, transformations,

and desired properties of systems. Therefore, tools that can work on logical

formulae are at the core of the verification tools – a particular example is

Satisfiability Modulo Theories (SMT) solvers which allow for the symbolic

representation of and reasoning on many expressive forms of software and

1



CHAPTER 1. INTRODUCTION

hardware systems. We refer to the problem of deciding the satisfiability of

a first-order logic formula with respect to some theories of interest as SMT

and the problem of analyzing (e.g., invariant checking) systems described

using SMT formulae as Verification Modulo Theories (VMT).

There has been a lot of progress in the last decade, on the develop-

ment of powerful and effective SMT and VMT techniques and tools for the

quantifier-free theories of linear arithmetic and uninterpreted functions.

This progress has enabled to solve practical problems in different appli-

cation domains, due to the expressiveness offered by the linear arithmetic

theories and the efficiency of the tools. Yet, many applications require

even more expressive theories (e.g., railways, aerospace, control software,

and cyber-physical systems), and it is a fundamental challenge to go beyond

the linear case, by introducing nonlinear polynomials and transcendental

functions such as exponentiation and trigonometric functions.

Modern SMT solvers combine propositional satisfiability (SAT) solvers

with decision procedures for first-order theories. The focus of earlier de-

velopments in SMT solvers has been on relatively easier theories like linear

arithmetic, and that has brought success in many application domains, e.g.,

verification, planning, scheduling, security, testing, synthesis, etc. This

success in the scale of problems that SMT solvers can solve is partly due

to the enormous progress in SAT solvers, and also because of the innovation

in core decision procedures, efficient data structures, heuristics, and paying

attention to implementation details. The progress of SMT solvers is quite

evident from the annual SMT competitions [CSW15], which also serve as a

driving force for the development of SMT solvers. However, the attention

on the theory of nonlinear arithmetic is relatively recent. In fact, there were

not many benchmarks for nonlinear arithmetic in the SMT-LIB repository

– SMT-LIB [BFT16] provides the SMT standard for expressing different

theories and the benchmarks – until recently. Currently, the research for

2



1.1. CONTRIBUTIONS

nonlinear arithmetic in SMT focuses on building scalable solvers. The sit-

uation of the theory of nonlinear arithmetic extended with transcendental

functions is even weaker; there is no standard (and also no benchmarks)

for that theory in SMT-LIB.

VMT techniques rely on scalability and efficiency of SMT solvers for

checking the satisfiability of SMT formulae. They also exploit the in-

cremental interface of SMT solvers by asking small incremental queries.

Moreover, powerful VMT approaches (like IC3ia, techniques based on in-

terpolation) require extended features like unsatisfiable cores, interpolants,

etc., from SMT solvers. The success of VMT methods for the theories

of linear arithmetic and uninterpreted functions is because modern SMT

solvers can fulfill such requirements. However, this is not the case when

we move from the linear to the nonlinear case. In fact, there are not many

verification tools that can support nonlinear arithmetic and even less for

the theory of nonlinear arithmetic extended with transcendental functions.

1.1 Contributions

In this thesis, we address the challenge of dealing with the quantifier-free

theory of nonlinear arithmetic, also with transcendental functions, in SMT

as well as in VMT. Moreover, we also focus on the issue of integrating

verification tools in two of the widely-used design tools.

We propose a practical and unifying approach, referred to as Incremental

Linearization, that trades the use of expensive, exact solvers for nonlinear

arithmetic for an abstraction-refinement loop on top of much less expensive

solvers for linear arithmetic and uninterpreted functions. A key feature

of the approach is that the linearization is performed incrementally and

only when and where needed, driven by spurious counterexamples. Note

that we do not discuss the VMT case for nonlinear arithmetic over the

3



CHAPTER 1. INTRODUCTION

integers mainly because we currently do not have the infrastructure (tools

to compare against, benchmarks, ...) for evaluation. However, we remark

that in principle, the incremental linearization approach presented in the

thesis should also work in that case, and the evaluation is left as future

work.

Our contributions are the following:

1. We address the SMT problem for nonlinear arithmetic over the reals,

nonlinear arithmetic over the reals extended with transcendental func-

tions, and nonlinear arithmetic over the integers, by presenting a novel

approach – incremental linearization. Incremental linearization for the

reals has been presented in [CGI+17a], but no experimental evalua-

tion has been reported in the paper. The work for transcendental

functions has been published in [CGI+17b] and the work for integers

has been accepted for publication [CGI+18]. In the thesis, we present

the approach in a unified way and also provide an extensive experi-

mental evaluation. Key features of our approach include the ability to

provide provably correct linear approximations for the multiplication

function as well as transcendental functions, dealing with periodicity

property of trigonometric functions, and proving the existence of a so-

lution without explicitly constructing it. We experimentally evaluate

our approach on all the SMT-LIB benchmarks from the quantifier-

free nonlinear arithmetic categories, as well as with benchmarks from

SMT-based verification queries over nonlinear transition systems, in-

cluding Bounded Model Checking of hybrid automata, several mathe-

matical properties from the MetiTarski suite and from other competi-

tor solver distributions. We compare against various techniques and

show that our approach is always competitive and often outperforms

state-of-the-art techniques.

4



1.1. CONTRIBUTIONS

2. We address the challenge of checking invariant properties of transition

systems expressed over nonlinear arithmetic and transcendental func-

tions, by extending incremental linearization for the VMT case. We

give the first IC3-based procedure for checking invariant properties of

such systems. The work about VMT for nonlinear arithmetic over the

reals has been published in [CGI+17a]. In the thesis, we also show the

effectiveness of our approach for the case of transcendental functions.

We evaluate on a set of benchmarks collected from various sources,

comparing against state-of-the-art VMT techniques; we show that our

approach outperforms state-of-the-art techniques.

3. We integrate the nuXmv VMT model checker with Simulink using

a black-box compilation approach and with Verilog using a white-

box compilation approach. This allows to verify certain classes of

Simulink models with nonlinear dynamics, and apply sate-of-the-art

VMT techniques on Verilog models which are mostly verified us-

ing SAT-based techniques. (Verilog to nuXmv has been presented

in [ICG+16].)

4. As a side-product of this work, we have collected a large number of

SMT and VMT benchmarks.

Implementation

The prototypes of incremental linearization for SMT and VMT, as pre-

sented in [CGI+17a, CGI+17b], were implemented in Python using the

PySMT [GM15] library and the Python interfaces of the MathSAT SMT

solver and the nuXmv VMT model checker. Now, we have a tighter inte-

gration of the approach inside MathSAT and nuXmv, and we report the

experimental results using the newer implementations.

5



CHAPTER 1. INTRODUCTION

1.2 Structure of the Thesis

The thesis is structured into five parts.

In Part I, we give some necessary technical background related to the

thesis and survey the state of the art in SMT and VMT over nonlinear

arithmetic and transcendental functions. Chapter 2 presents background

notions and introduces notations used in the thesis. In Chapter 3, we

discuss the SMT problem, mention theories of interest, and overview the

state of the art in nonlinear arithmetic and transcendental functions. In

Chapter 4, we focus on the VMT problem and techniques, and overview

the state of the art on nonlinear arithmetic and transcendental functions.

Chapter 5 discusses some design tools used in industry and academia; and

mentions some relevant verification tools that are developed in our group.

In Part II, we present our contributions for the SMT case. In Chapter 6,

we first outline the general ideas, and then provide details on the refinement

mechanisms and on the detection of satisfiable results. We also prove the

correctness of the overall approach. In the end of the chapter, we discuss

related work. In Chapter 7, we provide some heuristics and details of

the implementation of the approach inside MathSAT. We conclude the

chapter with experimental evaluation of our technique on a large number

of benchmarks, comparing MathSAT against different solvers.

In Part III, we present our contributions for the VMT case. In Chap-

ter 8, we describe the extension of incremental linearization from the SMT

to the VMT case. We also give the correctness proofs and in the end we

mention related work. In Chapter 9, we discuss some of the heuristics and

implementation details of incremental linearization in nuXmv. Then, we

present the experimental results comparing nuXmv against other VMT

tools over a collection of VMT benchmarks.

Part IV is devoted for integration of verification tools with design tools.

6



1.2. STRUCTURE OF THE THESIS

In Chapter 10, we describe a black-box compilation approach to integrate

nuXmv with Simulink based on a black-box compiler. Then, a white-

box compilation approach to integrate nuXmv with a Verilog tool is

presented in Chapter 11. In Chapter 12, we evaluate the Simulink to

nuXmv flow on an industrial-level case study and the Verilog to nuXmv

flow on a set of benchmarks.

Finally, we conclude the thesis in Chapter 13 by overviewing the con-

tributions and highlighting some future research directions.

7





Part I

Background and State of the Art





Chapter 2

Technical Background

In this chapter, we introduce the basic notation and notions that are used

throughout the rest of the thesis. First, we introduce a basic first-order

language and notation. Then, we discuss nonlinear arithmetic and tran-

scendental functions. Later, we also introduce concepts from differential

calculus.

Preliminaries

Our setting is standard first-order logic. Let Σ be the signature containing

function and predicate symbols. Let V be a set of variables. A 0-ary

function symbol is called a constant. A 0-ary predicate symbol is called a

Boolean atom. A Σ-term is a constant or a variable in V or it is built by

applying function symbols in Σ to Σ-terms. If t1, . . . , tn are Σ-terms and

R is a predicate with arity n, then R(t1, . . . , tn) is a Σ-atom. A Σ-literal

is a Σ-atom l or its negation ¬l. A clause is a disjunction of Σ-literals.

A Σ-formula is a Σ-literal, the application of the binary logical operators

¬, ∧, ∨, →, ↔ to Σ-formulae, and the quantifiers ∃, ∀ to an individual

variable and a Σ-formula. We call a Σ-formula quantifier-free if it does not

contain quantifiers. A variable is free in a Σ-formula if it is not in the scope

of a quantifier in the formula. A Σ-sentence is a Σ-formula without free

11



CHAPTER 2. TECHNICAL BACKGROUND

variables. A formula is in conjunctive normal form (CNF) if it is expressed

as a conjunction of clauses.

The semantics of a Σ-formula is given by a Σ-interpretation I, which

is a pair (DI, αI): where DI is a domain and αI is an assignment. The

assignment αI maps:

• each constant and each variable to a value from DI,

• each n-ary function symbol f to an n-ary function

fI : Dn
I → DI

that maps n elements of DI to an element of DI,

• each n-ary predicate symbol R to an n-ary predicate

RI : Dn
I → {>,⊥}

that maps n elements of DI to a truth value (> means true and ⊥
means false).

Evaluation of the logical connectives ∧, ∨, →, ↔, and ¬ is done using

their standard semantics. I is a Σ-model of a quantifier-free Σ-formula ψ,

written as I |= ψ if ψ evaluates to > under I; or I is not a Σ-model of

ψ, written as I 6|= ψ if ψ evaluates to ⊥ under I. I |= ∃x.ψ iff there exits

a value v ∈ DI such that I with the mapping x → v is a Σ-model for ψ.

I |= ∀x.ψ iff, for all the values v ∈ DI, I with the mapping x → v is a

Σ-model for ψ. We may also say of the Σ-model I of the Σ-formula ψ that

I satisfies ψ.

A Σ-formula ψ is satisfiable (unsatisfiable resp.) iff there exits (does not

exist resp.) a Σ-model of ψ. The formula ψ is valid iff all Σ-interpretations

are Σ-models of ψ. The Σ-formula ϕ is a logical consequence of the Σ-

formula ψ, denoted as ψ |= ϕ, iff for every I such that I |= ψ it also holds

that I |= ϕ.

12



Definition 2.1. A Σ-theory T is a (possibly infinite) set of Σ-models.

Definition 2.2. A Σ-formula ϕ is:

• satisfiable in T (or T -satisfiable), if ϕ is satisfiable in a Σ-model from

T ;

• valid in T (or T -valid), if ϕ is satisfiable in every Σ-model in T ;

• unsatisfiable in T (or T -unsatisfiable), if there is no Σ-model in T
that makes ϕ satisfiable (or ϕ is not T -satisfiable).

We call a theory solver for Σ-theory T (T -solver) any procedure estab-

lishing whether any given finite conjunction (or finite set) of Σ-literals is

T -satisfiable or not.

Definition 2.3. Two Σ-formulae ϕ and ψ are:

• T -equivalent, if ϕ and ψ have the same Σ-models from T ;

• T -equisatisfiable, if ϕ is T -satisfiable iff ψ is T -satisfiable.

The quantifier elimination is an approach to construct a T -equivalent

quantifier-free formula to a given quantified formula [BM07]. A theory

admits quantifier elimination if there exists an algorithm that solves the

quantifier elimination problem.

For simplicity, we may omit the “Σ-” prefix from term, atom, for-

mula, theory, interpretation, etc. We may call an interpretation of T a

T -interpretation. Similarly, we may call a model from T a T -model. We

denote formulae with ϕ, ψ, I, T, P , terms with t, s, variables with x, y, con-

stants with a, b, c, functions with f,tf, each possibly with subscripts. If

X is a set of variables, we write ϕ(X) to denote the fact that all the vari-

ables of ϕ are in X. We denote with ϕ{x 7→ t} the formula obtained by

replacing all the free occurrences of x in ϕ with t; and we use the same

13



CHAPTER 2. TECHNICAL BACKGROUND

notation for terms and models, and we extend it to ordered sequences of

distinct variables in the natural way. (E.g., if x =̇ x1, .., xk and t =̇ t1, .., tk,

then ϕ{x 7→ t} denotes ϕ{x1 7→ t1}{... 7→ ...}{xk 7→ tk}.) If Γ is a set of

formulae, we write
∧

Γ (or simply Γ) to denote the conjunction of all the

formulae in Γ. We abuse the notation and write t ∈ ϕ to denote that term

t occurs in ϕ. If µ is an interpretation and x is a variable, we write µ[x]

to denote the value of x in µ, and we extend this notation to terms and

formulae in the usual way. abs(t) stands for ite(t < 0,−t, t), ite [KSJ09]

being the standard if-then-else term operator. (The semantics of an ite

term is the usual semantics of if-then-else semantics from programming

languages.) We write t1 < t2 < t3 for t1 < t2 ∧ t2 < t3. (A similar notation

is used with “≤”.)

We define a bijective function T 2B (theory to Boolean) and its inverse

B2T =̇ T 2B−1 (Boolean to theory) for formulae, such that T 2B maps

Boolean atoms into themselves and non-Boolean atoms into fresh Boolean

atoms. We call T 2B(ϕ) a Boolean abstraction of a formula ϕ. We call a

truth assignment µT for a formula ϕ a truth value assignment to the atoms

of ϕ. We represent µT using a set of literals in ϕ such that for each atom

in ϕ either A or ¬A is present in it, and A ∈ µT means that A is assigned

> whereas ¬A ∈ µT means that A is assigned ⊥. We write Γ |= ϕ to

denote that ϕ is a logical consequence of the set Γ of formulae. µT is a

propositionally satisfying truth assignment for a formula ϕ if T 2B(
∧
µT ) |=

T 2B(ϕ).

Example 2.4. Consider the following formula ϕ:

ϕ =̇ (x ≤ y) ∧ ((x+ 3 = z) ∨ (z ≥ y)).

Then

T 2B(ϕ) =̇ p ∧ (q ∨ r)

14



where p, q, r are Boolean variables. A truth assignment µ for ϕ can be

µT =̇ {(x ≤ y),¬(x+ 3 = z), (z ≥ y)}.

µT is also a propositionally satisfying truth assignment. 4

Nonlinear Arithmetic and Transcendental Functions.

We denote with Z, Q and R the set of integer, rational and real numbers,

respectively. The absolute value of a ∈ R, denoted by |a|, is defined as |a| =
a if a ≥ 0, and −a otherwise. A monomial m in variables x1, x2, . . . , xn is

a product xα1
1 ∗x

α2
2 ∗ . . .∗xαn

n , where each αi is a non-negative integer called

exponent of the variable xi. When clear from the context, we may omit

the multiplication symbol ∗ and simply write xα1
1 x

α2
2 . . . xαn

n . A polynomial

p is of the form: an ∗mn + an−1 ∗mn−1 + . . . + a0, where an, an−1, . . . , ao

are constants with the constraint an 6= 0 and are called coefficients, and

mn,mn−1, . . . ,m1 are monomials. We write Q[x1, . . . , xn] as the sets of

the polynomials containing the variables x1, . . . , xn with all the coefficients

in Q. A univariate polynomial is a polynomial containing one variable,

whereas a multivariate polynomial contains more than one variable. A

polynomial constraint P is of the form p ./ 0 where p is a polynomial and

./ ∈ {<,≤,=, 6=, >,≥}.
The total degree of a monomial is the sum of the exponents of its vari-

ables. The total degree of a polynomial is the highest degree among its

monomials. A monomial is linear if it has total degree less than or equal

to one, otherwise it is nonlinear, and similarly for polynomials. A polyno-

mial constraint p ./ 0 is a linear constraint if p is linear and is a nonlinear

constraint if p is nonlinear.

A real number c ∈ R is a real root of p ∈ Q[x] iff p(c) = 0. A real

number a ∈ R is an algebraic number iff it is a root of some p ∈ Q[x],

otherwise it is transcendental number. An example of algebraic number is

15



CHAPTER 2. TECHNICAL BACKGROUND

√
2, while π and e are transcendental numbers.

A function over the reals f : Rn → R maps every element in Rn

into a corresponding element in R. A function f : Rn → R is called

univariate when n = 1, bivariate when n = 2, and multivariate when

n > 1. A function y = f(x1, . . . , xn) is algebraic iff it satisfies a polynomial

equation, i.e., iff there exists a polynomial p ∈ Q[y, x1, . . . , xn] such that

∀x1, . . . , xn.(p(y, x1, . . . , xn) = 0). A function is transcendental if it is not

algebraic [Tow07, Haz93].

We consider continuous and differentiable functions. If f is a univariate

function, we write d
dxf for the first-order derivative of f . We also write f (i)

for the i-th derivative of f , and f ′ and f ′′ for f (1) for f (2), respectively.

Let l and u be two real numbers. We denote open and closed intervals

between them as ]l, u[ and [l, u] respectively. Given a univariate function

f over the reals, the graph of f is the set of pairs {(x, f(x)) | x ∈ R}. We

refer to an element (x, f(x)) of the graph as a point of f .

Definition 2.5. The tangent line at a ∈ R to a univariate function f ,

denoted with TanLinef,a(x), is the straight line defined as follows:

TanLinef,a(x) =̇ f(a) + f ′(a) ∗ (x− a)

Definition 2.6. Given a, b ∈ R and a < b, the secant line at [a, b] to a

univariate function f , denoted with SecLinef,a,b(x), is the straight line

defined as follows:

SecLinef,a,b(x) =̇
f(a)− f(b)

a− b
∗ (x− a) + f(a).

Definition 2.7. Let f be a univariate function twice differentiable at a

point c. The concavity of f at c is the sign of f ′′(c).

Definition 2.8. A univariate function f has an inflection point at c iff it

is twice differentiable at c, f ′′(c) = 0, and there exists ε > 0 such that for

16



all x ∈ [c − ε, c[ the value f(x) has sign s 6= 0 and for all x ∈]c, c + ε] the

value f(x) has sign s′ 6= 0 opposite to s.

Proposition 2.9. Let f be a univariate function. If f ′′(x) ≥ 0 for all

x ∈ [l, u], then for all a, x ∈ [l, u] TanLinef,a(x) ≤ f(x), and for all

a, b, x ∈ [l, u] ((a 6= b ∧ a ≤ x ≤ b)→ SecLinef,a,b(x) ≥ f(x)).

If f ′′(x) ≤ 0, then the dual property holds.

Let f(x, y) be a bivariate function. We write d
dxf(x, y) and d

dyf(x, y) for

the first-order partial derivatives of f(x, y) w.r.t. x and y, respectively.

Definition 2.10. The tangent plane at a point (a, b) to a bivariate function

f(x, y), denoted with TanPlanef,a,b(x, y), is defined as follows:

TanPlanef,a,b(x, y) =̇ f(a, b) + d
dxf(x, y){x 7→ a}{y 7→ b} ∗ (x− a)

+ d
dyf(x, y){x 7→ a}{y 7→ b} ∗ (y − b)

Taylor Series and Taylor’s Theorem.

Definition 2.11. Let f(x) be n-differentiable at a point a. The Taylor

series of f of degree n centered around a is the polynomial:

Pn,f,a(x) =̇
n∑
i=0

f (i)(a)

i!
∗ (x− a)i

The Taylor series centered around zero is also called Maclaurin series.

According to Taylor’s theorem, any continuous function f(x) that is

(n + 1)-differentiable can be written as the sum of the Taylor series and

the remainder term:

f(x) = Pn,f,a(x) +Rn+1,f,a(x)

where Rn+1,f,a(x) is the Lagrange form of the remainder, expressible as

Rn+1,f,a(x) =̇
f (n+1)(b)

(n+ 1)!
∗ (x− a)n+1.

17



CHAPTER 2. TECHNICAL BACKGROUND

for some b between x and a.

Although the value of b is not known, an upper bound on the size of the

remainder Ru
n+1,f,a(x) at a point x can be defined as:

Ru
n+1,f,a(x) =̇ max

c∈[min(a,x),max(a,x)]
(|f (n+1)(c)|) ∗ |(x− a)n+1|

(n+ 1)!
.

From this, we obtain a lower- and an upper-bound for f(x), given by

Pn,f,a(x)−Ru
n+1,f,a(x) and Pn,f,a(x) +Ru

n+1,f,a(x) respectively. Clearly, the

closer is a to x, the tighter the approximation of f(x) will be.

In this thesis we consider univariate exponential and trigonometric tran-

scendental functions. We recall that the graphs of exponential and trigono-

metric functions have only a finite number of points in Q×Q (e.g., (0, 1)

for exp, (0, 0) for sin). Finally, we recall that trigonometric functions like

sin are periodic. For example, for all i ∈ Z, sin(a) = sin(a+ 2iπ).

18



Chapter 3

Satisfiability Modulo Theories

In this chapter, we define the SAT and SMT problems, and we overview

the SMT solving approach followed by most modern SMT solvers. We also

mention some of the features and the extended functionalities provided

by the solvers. We then introduce the theories relevant to the thesis and

discuss the state of the art on the theories.

3.1 The Propositional Satisfiability Problem

Propositional Satisfiability (SAT) is the problem of determining whether a

given formula over Boolean variables has a satisfying truth assignment. It

has been shown to be NP-Complete [Coo71].

A SAT solver is an implementation of a procedure for solving the SAT

problem. Modern SAT solvers, for instance MiniSat [ES03a], take as input

a propositional formula in CNF. Most SAT solvers are based on the DPLL

procedure [DP60, DLL62] with the clause learning technique [SS99]. The

main idea is to construct an interpretation in such a way that all the clauses

in the given CNF formula are satisfied. This is performed by searching, i.e.,

interleaving literal decisions with unit propagations. When a conflicting

clause is found, a new clause is learned via conflict analysis and back-

tracking is performed. If the solver finds all clauses to be satisfied under

19



CHAPTER 3. SATISFIABILITY MODULO THEORIES

bool checkSMT(ϕ, T ):
1. ϕ′ := preprocess(ϕ)

2. ϕB := T 2B(ϕ′)

3. while true:

4. 〈sat, µB〉 := checkSAT(ϕB)

5. if not sat:

6. return false

7. 〈sat, γ〉 := T -solver(B2T (µB))

8. if sat:

9. return true

10. ϕB := ϕB ∧ ¬T 2B(γ)

Figure 3.1: An abstract procedure for SMT solving using the lazy/DPLL(T ) approach

the constructed interpretation, the problem is satisfiable, and if it finds a

conflict without making any decision, the problem is unsatisfiable.

3.2 The Satisfiability Modulo Theories Problem

Satisfiability Modulo Theories (SMT) is the problem of deciding the T -

satisfiability of a formula with respect to some theory T or combination

of theories (T1 ∪ T2). The SMT problem is NP-hard since it subsumes the

question of checking the satisfiability of propositional formulae.

An SMT solver implements a procedure that solves the SMT

problem, e.g., z3 [dMB08b], Yices [Dut14], MathSAT [CGSS13],

CVC4 [BCD+11], veriT [BODF09], etc. The most efficient implementa-

tions of SMT solvers use the so-called “lazy approach”/DPLL(T ) [Seb07,

BSST09, NOT06]), where a SAT solver is tightly integrated with a T -solver

– e.g., a very abstract procedure is shown in Fig. 3.1.

As a first step, SMT solvers apply as preprocessing some satisfiability-

preserving simplifications and CNF transformations. The role of the SAT

solver is to enumerate truth assignments to the Boolean abstraction of the

20



3.2. THE SMT PROBLEM

preprocessed formula. If the Boolean abstraction is found to be unsatisfi-

able by the SAT solver then the input formula is also unsatisfiable. When

the SAT solver finds a satisfying truth assignment µB, then a T -solver is

invoked to check if B2T (µB) is T -satisfiable. In that case, the original

formula is also T -satisfiable. Otherwise, the T -solver returns a conflict set

γ which identifies a reason for the unsatisfiability. Then, ¬T 2B(γ) (called

T -lemma) is learned by the SAT solver to prune the search.

Besides deciding T -satisfiability and generating conflict sets, modern T -

solvers support several other features relevant to SMT(T ). Here we recall

two other notable features.

Model Generation. When invoked on a T -satisfiable set of literal Γ, a

model generating T -solver can return a T -model µ which is a witness

for the consistency of Γ in T , i.e., µ |=T
∧

Γ.

Incrementality and back-trackability. In the lazy/DPLL(T ) ap-

proach to SMT(T ), a T -solver is often invoked in a stack-based man-

ner. Thus incrementality and back-tractability of a T -solver plays a

vital role in the overall efficiency of the approach. Incremental means

that T -solver “remembers” its computation status from one call to

the other, so that, whenever a set of literals Γ =̇ Γ1 ∪ Γ2 is given as

input such that Γ1 has been just proved to be T -satisfiable, it avoids

restarting the computation from scratch by resuming the calculation

from the previous status. Back-tractable means that it is possible to

undo steps and efficiently return to a prior computation status on the

stack.

Theories of Interest

All the theories we consider are the first-order theories with equality. Thus

every theory contains the following axioms for every function and every

21



CHAPTER 3. SATISFIABILITY MODULO THEORIES

predicate:

∀x.(x = x)

∀x, y.(x = y → y = x)

∀x, y, z.((x = y ∧ y = z)→ x = z)

∀x1, . . . , xn, y1, . . . , yn.((
n∧
i=1

xi = yi)→ f(x1, . . . , xn) = f(y1, . . . , yn))

∀x1, . . . , xn, y1, . . . , yn.((
n∧
i=1

xi = yi)→ (R(x1, . . . , xn)↔ R(y1, . . . , yn)))

Now we discuss some theories relevant to this thesis.

Linear Arithmetic

The theory of linear arithmetic (LA) on the rationals (LRA) and on the

integers (LIA) is the first-order theory whose atoms are linear polynomial

constraints. LRA (LIA resp.) consists of the set of models that interprets

the symbols of linear polynomial constraints in the usual way over Q (Z
resp.).

The LRA-satisfiability of a conjunction of literals is decidable and poly-

nomial [Kar84]. The main algorithms for LRA are variants of Simplex and

Fourier-Motzkin algorithms, both of which are not the best due to the ex-

ponential complexity. In fact, many SMT solvers for LRA are based on

a Simplex variant presented in [DdM06], which provides efficient support

for incrementality and back-tractability.

The LIA-satisfiability of a conjunction of literals is decidable and NP-

complete [Pap81]. Most SMT solvers approach the LIA-satisfiability by

combining an LRA solving technique with branch-and-bound and the Go-

mory’s cutting plane methods. Similar to LRA, efficient incremental and

back-tractable procedures for LIA have been conceived – e.g., [Gri12].

22



3.2. THE SMT PROBLEM

Nonlinear Arithmetic

The theory of nonlinear arithmetic (NA) on the reals (NRA) and on the

integers (NIA) is the first-order theory whose atoms are (both linear and

nonlinear) polynomial constraints. NRA (NIA resp.) consists of the

set of models that interprets the symbols of polynomial constraints in the

usual way over R (Z resp.).

We denote with NT A the theory of NRA extended with the transcen-

dental functions: the exponential function and the trigonometric functions,

and the transcendental number π.

The NRA-satisfiability of a conjunction of literals is decidable and

doubly-exponential [DH88, Wei88, BD07], whereas the case of NIA-

satisfiability is undecidable [Mat93], as well as the case of NT A-

satisfiability is undecidable [Ric68].

We discuss different solving approaches to SMT(NRA), SMT(NIA),

and SMT(NT A) in Section 3.3.

Uninterpreted Functions

The theory of uninterpreted functions (UF) is the first-order theory with

no restriction on Σ. The UF -satisfiability of conjunctions of literals is

decidable and polynomial [Ack54]. An UF -solver is usually implemented

on top of data structures and algorithms for computing the congruence

closure of a set of terms [NO07] – providing important features such as

efficient incrementality and back-tractability.

Theory of Bit Vectors

The theory of fixed-width bit vectors (BV) is a first-order theory with equal-

ity which aims at representing Register Transfer Level (RTL) hardware

circuits. It can also be used to encode software verification problems.

23



CHAPTER 3. SATISFIABILITY MODULO THEORIES

The BV-satisfability of conjunctions of literals is decidable and NP-

complete. A typical approach to SMT(BV) is to apply some word-level

preprocessing, and then encode the result into a SAT problem – also known

as “bit blasting”.

Theory of Arrays

The theory of arrays (AR) is a multi-signature theory: it has a signature

for index, a signature for array element, and a signature for arrays. The

array signature contains two functions namely read (of arity two) and write

(of arity three), and contains one equality predicate. The read function

returns the array element at a given index, and the write function returns a

new array with one element updated at the given index with the given value

while other elements remain unchanged. The equality predicate provides

comparison on two arrays.

Axioms for the theory of arrays are:

∀a.∀i.∀e.(read(write(a, i, e), i) = e) (3.1)

∀a.∀i.∀j.∀e.((i 6= j)→ read(write(a, i, e), j) = read(a, j)) (3.2)

∀a.∀b.(∀i.(read(a, i) = read(b, i))→ (a = b)) (3.3)

The first two rules are called the McCarthy’s axioms and the last one is

called the extensionality axiom. The presented theory of arrays is decidable

and its complexity is NP-complete, for more results on decidability we

suggest the reference [BMS06].

Theory Combinations

In many practical applications of SMT, the theory T is a combination of

two or more theories T1, . . . , Tn. Most modern SMT solvers rely on the Nel-

son Oppen logical framework [NO79, Opp80] for dealing with theory combi-

nations. To this extent, various improvements have been achieved over the

24



3.2. THE SMT PROBLEM

past decade, most noticeably the Delayed Theory Combination [BBC+06]

schema and its extension with “model-based heuristic” [dMB08a]. For in-

terested readers, here are some other references [Fon09, CFR14].

In this thesis, we are interested in using the combination of UF with

LA: we denote with UFLRA the combined theory of UF and LRA,

UFLIA the combined theory of UF and LIA.

Extended SMT Functionality

Many applications of SMT require functionalities beyond just checking

the satisfiability of SMT formulae. Here we recall two of such extended

functionalities relevant to this thesis.

Extraction of Unsatisfiable Cores

Given an unsatisfiable CNF formula ϕ, we say that an unsatisfiable CNF

formula ψ is an unsatisfiable core of ϕ, if and only if ϕ =̇ ψ ∧ ψ′ where

ψ′ is a CNF formula (possibly >). Several algorithms have been proposed

for the unsatisfiable core extraction of propositional formulae over the last

decade. However, there are not many approaches in the case of SMT. In

fact, a prominent and simple technique for the unsatisfiable core extraction

of SMT formulae is the Lemma-Lifting approach, which uses a proposi-

tional unsatisfiable core extractor under the hood. Let Γ =̇ {D1, . . . , Dk}
be the set of T -lemmas learned by an SMT(T ) solver when proving un-

satisfiability of a given formula ϕ =̇ C1 ∧ . . . ∧ Cn. In order to extract

an unsatisfiable core of ϕ, a propositional unsatisfiable core extractor is

invoked on the propositional problem T 2B(ϕ ∧
∧

Γ). Suppose the unsat-

isfiable core returned by the propositional unsatisfiable core extractor is

T 2B(C ′1 ∧ . . . ∧ C ′m ∧ D′1 ∧ . . . ∧ D′j), then an unsatisfiable core of ϕ is

C ′1 ∧ . . . ∧ C ′m.

25



CHAPTER 3. SATISFIABILITY MODULO THEORIES

Computation of Craig Interpolants

Let φ and ψ be two formulae, φ � ψ denotes that all the uninterpreted

symbols of φ occur in ψ.

Definition 3.1. Given an ordered pair 〈φ, ψ〉 of formulae such that φ ∧
ψ |=T ⊥, a Craig interpolant (or simply interpolant) I is defined as follows:

• φ |=T I,

• ψ ∧ I |=T ⊥,

• I � φ and I � ψ.

There has been significant progress in the computation of interpolants in

LA [CGS10, GLS10]. However, in the case of NA, it is still a challenging

problem – some attempts include [KB11, GZ16].

3.3 State of the Art

We now discuss the state of the art on NRA, NT A, and NIA.

For SMT(NRA) various techniques have been explored, including com-

plete methods based on quantifier elimination and convex programming,

and incomplete methods based on interval constraint propagation and lin-

earization. In the case of SMT(NIA), most SMT solvers rely on the

bit-blasting approach. Some SMT solvers opt for interval constraint prop-

agation and linearization. A more recent treatment to SMT(NIA) is to

combine the SMT(NRA) solving techniques with the branch-and-bound

method. For SMT(NT A) solving, the approaches include methods based

on interval constraint propagation and deductive methods.

First, we focus on the common approaches to NRA, NT A, and NIA,

and then we discuss the specific ones.

26



3.3. STATE OF THE ART

NRA, NT A, and NIA– Common Approaches

Interval Constraint Propagation

Interval constraint propagation (ICP) [BG06] is an incomplete technique

for solving constraints over NRA, NIA, and NT A. A key feature of

ICP is to detect inconsistency when the domain of a problem is bounded.

Initially, it has been investigated in [GB06, Rat06]. Now it has been in-

tegrated into several SMT solvers, most noticeably raSAT [TKO16] for

NRA; iSAT3 [FHT+07] for NIA and NT A; and dReal [GKC13] for

NT A.

Interestingly, dReal relies on the notion of delta-satisfiability [GAC12],

which guarantees that there exists a variant (within a user-specified δ “ra-

dius”) of the original problem such that it is satisfiable. The approach can-

not ensure that the original problem is satisfiable since it relies on numerical

approximation techniques that only compute safe over-approximations of

the solution space.

In contrast to dReal, iSAT3 and raSAT may find solutions to prob-

lems in some cases.

Linearization

A recent development in solving SMT(NRA) is the method of subtropical

satisfiability [FOSV17], which is an incomplete method to detect satisfi-

ability of conjunctions of strict inequality constraints. The technique is

efficient in returning satisfiable or unknown. It has been implemented in

veriT [BODF09]. The method encodes a sufficient condition for satisfia-

bility into an LRA problem.

In [BLO+12], the SMT(NIA) problem is approached by reducing the

problem into an SMT(LIA) problem via linearization. The linearization

is performed by doing case analysis on the variables appearing in nonlinear

27



CHAPTER 3. SATISFIABILITY MODULO THEORIES

monomials. The method is geared towards detecting satisfiable instances.

If the domain of the problem is bounded then the method can generate

an equisatisfiable SMT(LIA) formula. Otherwise, it solves a bounded

problem and incrementally increases the bounds of some variables until

it finds a solution to the linear problem. The authors propose to choose

variables that appear in the unsatisfiable core, for increasing the bounds.

In some cases, it may detect unsatisfiability of the original problem. The

paper also presents an extension of the method to find rational solutions

with a fixed denominator. This work has been extended in [LORR14],

where the variable selection heuristics are improved via Max-SMT [NO06,

CFG+10] and Optimization Modulo Theories (OMT) [ST15].

NRA-Specific Approaches

Quantifier Elimination

The two well-known and well-studied quantifier elimination procedures for

the theory of nonlinear polynomials are Cylindrical Algebraic Decompo-

sition (CAD) [Col74] and Virtual Substitution (VS) [Wei97]. (VS tar-

gets problems with low-degree – usually up to degree 3 [Stu17].) They

have doubly-exponential worst-case complexity [DH88, Wei88, BD07]. Al-

though these procedures have been studied for decades, their use in the

SMT(NRA) solving is relatively recent. SMT-RAT [CÁ11, CLJÁ12,

CKJ+15] represents the first attempt to integrate CAD and VS in an

SMT(NRA) solver. 1 Then, z3 [dMB08b] and Yices [Dut14] (winners

of the SMT competition 2017 in the QF-NRA division) also implemented

a variant [JdM12] of CAD. Note that z3 and Yices use a relatively newer

framework – nlSAT [JdM12]/MCSAT [dMJ13] framework for SMT solving

– that allows for a much tighter integration of the CAD algorithm with the

1SMT-RAT also uses Gröbner bases [Stu94] as a theory solver [JLCÁ13].

28



3.3. STATE OF THE ART

Boolean search of the solver than the DPLL(T ) framework.

A critical issue with the NRA-solvers based on quantifier elimination

is that they do not yet offer efficient incrementality and back-tractability

features [DE17].

Convex Programming

CalCS [NPSS10] is an SMT solver for a restricted subset of NRA,

i.e., nonlinear polynomial constraints that are convex. It is a DPLL(T )

solver where the T -solver is based on the checking feasibility of convex

constraints [BV04]. To detect satisfiable cases, it also performs under-

approximations using hyper-planes.

NT A-Specific Approaches

Deductive Methods

The MetiTarski [AP10] theorem prover relies on resolution and on a de-

cision procedure for NRA to prove quantified inequalities involving tran-

scendental functions. It works by replacing transcendental functions with

upper- or lower-bound functions specified by means of axioms (correspond-

ing to either truncated Taylor series or rational functions derived from

continued fraction approximations), and then using an external decision

procedure for NRA for solving the resulting formulae. MetiTarski can-

not prove the existence nor compute a satisfying assignment of a solution.

It may require the user to manually write axioms if the ones automatically

selected from a predefined library are not enough.

The approach presented in [EKK+11], where the NT A theory is re-

ferred to as NLA, is similar in spirit to MetiTarski in that it combines

the SPASS theorem prover [WDF+09] with the iSAT3 SMT solver. The

approach relies on the SUP(NLA) calculus that combines superposition-

29



CHAPTER 3. SATISFIABILITY MODULO THEORIES

based first-order logic reasoning with SMT(NT A).

Combination of Interval Propagation and Theorem Proving.

Gappa [dDLM11, MM16] is a standalone tool and a tactic for the

Coq proof assistant, that can be used to prove properties about numeric

programs (C-like) dealing with floating-point or fixed-point arithmetic.

Another related Coq tactic is Coq.Interval [Mel11]. Both Gappa and

Coq.Interval combine interval propagation and Taylor approximations

for handling transcendental functions. A similar approach is followed also

in [SH13], where a tool written in Hol-Light to handle conjunctions

of non-linear equalities with transcendental functions is presented. The

work uses Taylor polynomials up to degree two. NLCertify [Mag14]

is another related tool which uses interval propagation for handling

transcendental functions. It approximates polynomials with sums of

squares and transcendental functions with lower and upper bounds using

some quadratic polynomials [AGMW13]. Internally, all these tools/tactics

rely on multi-precision floating point libraries for computing the interval

bounds.

NIA-Specific Approaches

Bit-Blasting

In the bit-blasting approach [FGM+07], an NIA-satisfiability problem is

iteratively reduced to a SAT problem by first bounding the integer vari-

ables, and then encoding the resulting problem to a SAT problem. The

SAT problem is then checked by a SAT solver. This approach is geared

towards finding models for the NIA problem, and it can not prove NIA-

unsatisfiability unless the NIA problem is bounded. If the SAT problem

is unsatisfiable then the bounds on the integer variables are increased, and

the process of encoding to a SAT problem and SAT check is repeated.

30



3.3. STATE OF THE ART

Combination of NRA and Branch-and-Bound

The approach to combine NRA solving techniques with the branch-and-

bound method has been recently investigated in [Jov17] and [KCÁ16]. The

main idea is to relax the NIA problem by treating as if it was an NRA
problem and apply the NRA techniques for solving it. Since the relaxed

problem is an over-approximation of the original problem, the unsatisfiabil-

ity of theNIA problem is implied by the unsatisfiability of theNRA prob-

lem. If the NRA-solver finds a non-integral solution a to a variable x, then

a lemma (x ≤ bac ∨ x ≥ dae) is added to the NRA problem. Otherwise,

an integral solution is found for the NIA problem. In [Jov17], the CAD

procedure (as presented in [JdM12]) is combined with branch-and-bound

in the MCSAT framework and has been implemented in Yices [Dut14].

In [KCÁ16], the authors have presented how to combine CAD and VS with

branch-and-bound in the DPLL(T ) framework.

31



CHAPTER 3. SATISFIABILITY MODULO THEORIES

32



Chapter 4

Verification Modulo Theories

Here we introduce the symbolic transition systems and the VMT problem.

We also discuss various VMT techniques and later we overview the state

of the art on NRA and NT A.

4.1 Symbolic Transition Systems

Transition systems are used as models to describe the behavior of systems.

They specify how systems can evolve from one state to another, where

a state describes some information about a system at a certain moment.

A transition system is finite if the set of states of the system is finite,

otherwise it is infinite. A prominent class of transition systems is symbolic

transition systems.

Definition 4.1. A symbolic transition system S =̇ 〈X, I, T 〉 is a tuple

where:

• X is a finite set of (state) variables,

• I(X) is a formula denoting the initial states of the system, and

• T (X,X ′) is a formula expressing the transition relation, where X ′ is

the set obtained by replacing each element x ∈ X with x′.

33



CHAPTER 4. VERIFICATION MODULO THEORIES

Definition 4.2. A state si of S is an assignment to the variables X.

Definition 4.3. A path (execution trace) σk =̇ s0, s1, s2, . . . , sk−1 of length

k (possibly infinite) for S is a sequence of states such that s0 |= I(X) and

si ∧ si+1{X 7→ X ′} |= T (X,X ′) for all 0 ≤ i < k − 2.

Let P (X) be a formula whose assignments represent a property over the

state variables X. (P (X) can be seen as representing the “good” states,

while ¬P (X) represents the “bad” states.)

Definition 4.4. The invariant verification problem, denoted with S |=
P (X), is the problem of checking if for all the finite paths s0, s1, . . . , sk of

S, for all i, 0 ≤ i ≤ k, si |= P (X).

Its dual formulation in terms of reachability of ¬P (X) is the problem

of finding a path s0, s1, . . . , sk of S such that sk |= ¬P (X). In this thesis,

we focus on the invariant verification problem.

We denote with X〈i〉 the set obtained by replacing x with x〈i〉. We call

an unrolling of S of length k the formula I(X〈0〉) ∧
∧k−1
i=0 T (X〈i〉, X〈i+1〉).

4.2 The Verification Modulo Theories Problem

Verification Modulo Theories (VMT) is the problem of verifying the prop-

erties of a symbolic transition system where I and T are expressed as

SMT(T ) formulae for some background theory or some combination of

theories T . VMT has received a lot of attention over the last decade and

various approaches have been proposed, particularly for the invariant ver-

ification problem. We discuss the prominent techniques for the invariant

verification problem.

34



4.2. THE VMT PROBLEM

Bounded Model Checking

Bounded Model Checking (BMC) [BCCZ99] is a symbolic technique that

explores all the paths of the system from the initial state up to a fixed

length. It was first introduced for finite-state transition systems, using

a SAT solver. Later, it was extended to infinite-state transition systems

in [dMRS02], replacing the underlying SAT solver with an SMT solver.

Given a transition system S =̇ 〈X, I, T 〉 and invariant property P (X),

BMC presents to the solver a sequence of proof obligations of the form:

BMC(S, P, k) =̇ I(X〈0〉)∧T (X〈0〉, X〈1〉)∧ . . .∧T (X〈k−1〉, X〈k〉)∧¬P (X〈k〉)

for increasing values of k (exploiting incrementality of the solver), until

a counterexample trace is found, or resource limit is exhausted. BMC is

an incomplete technique, oriented to finding violations, and likely to work

well on unsafe instances.

k-Induction

k-induction [SSS00] is a technique that extends BMC for proving properties

in transition systems. By exploiting a reasoning similar to the induction

principle, the technique consists of finding a bound k such that both a base

step and an inductive step hold.

Given S =̇ 〈X, I, T 〉 and P (X), the base step consists of proving that

P (X) holds for the first k steps of the system. This can be done by checking

the unsatisfiability of BMC(S, P, i), for 0 ≤ i ≤ k. In addition, the induc-

tive step attempts to prove the validity of an inductive safety argument of

the form:(
P (X〈0〉) ∧ T (X〈0〉, X〈1〉) ∧ . . . ∧ P (X〈k−1〉) ∧ T (X〈k−1〉, X〈k〉)

)
→ P (X〈k〉)

Efficient algorithms that exploit the solver incrementality to interleave

base and inductive steps have been presented in [ES03b].

35



CHAPTER 4. VERIFICATION MODULO THEORIES

Similar to BMC, k-induction may be applied to infinite-state transition

systems, and it has been explored in several works, e.g., [dMRS03].

A property P is said to be k-inductive in a transition system if it can

be proved using k-induction for some finite k.

Interpolation-based Model Checking

Interpolation-based Model Checking (IMC) [McM03, McM05] combines

BMC and interpolation to allow unbounded model checking (both for finite-

and infinite-state transition systems). It tries to overcome the limitations

of BMC and k-induction by finding an inductive invariant R.

Definition 4.5. A formula R(X) is an inductive invariant for a transition

system S =̇ 〈X, I, T 〉 and a property P (X) if:

I(X) |= R(X)

T (X,X ′) ∧R(X) |= R(X ′)

R(X) |= P (X)

The fundamental idea of IMC is to use interpolants for over-

approximating the set of reachable states in a transition system and also

use them to find an inductive invariant R.

IC3

Incremental Construction of Inductive Clauses for Indubitable Correctness

(IC3) [Bra11] is an invariant checking procedure for finite-state transi-

tion systems. It is considered to be more powerful than IMC – e.g., it

is clear from the results of the recent Hardware Model Checking Compe-

tition [CLP+16]. A distinguishing characteristic of IC3 is that it works

without unrolling of the transition relation.

36



4.2. THE VMT PROBLEM

The goal of IC3 is to find an inductive invariant for the transition system

and the property or find a counterexample.

IC3 works on a sequence of sets of formulae F0, . . . , Fk, called frames,

which over-approximate the set of the reachable states up to a fixed length.

It maintains the following invariant conditions:

1. F0(X) |= I(X)

2. for all i, 0 ≤ i < k, Fi(X) |= Fi+1(X)

3. for all i, 0 ≤ i < k, Fi(X) ∧ T (X,X ′) |= Fi+1(X
′)

4. for all i, 0 ≤ i < k, Fi(X) |= P (X)

Frames are represented in CNF, and thus each frame is a set of clauses. This

allows to obtain an equivalent condition 2: for all i, 0 ≤ i < k, Fi ⊆ Fi+1.

On a high-level, IC3 can be seen as an iterative method in which each it-

eration performs two different phases: the blocking phase, and the propaga-

tion phase. The goal of the blocking phase is to ensure that the last frame in

the sequence, Fk, satisfies P , i.e., Fk(X) |= P (X). In case Fk(X) 6|= P (X),

it recursively tries to check via backward analysis whether some bad state

is reachable to F0. If it is the case, then a counterexample is found (i.e.,

S 6|= P ). Otherwise, the bad state found in some frame Fj (j ≤ k) is

blocked in Fj. In the propagation phase, IC3 checks if a clause in a frame

Fi can also be added to the subsequent frame Fi+1. To perform this check,

IC3 uses the concept of relative induction [Bra11].

Definition 4.6. Given a transition system S =̇ 〈X, I, T 〉, the formula

φ(X) is inductive relative to ψ(X) in S, if:

I(X) |= φ(X)

T (X,X ′) ∧ ψ(X) |= φ(X ′)

37



CHAPTER 4. VERIFICATION MODULO THEORIES

BV LRA LIA NRA NT A
IC3ia [CGMT16] X X X

CTIGAR [BBW14] X

IC3qe [CG12] X X

z3 [dMB08b, HB12a] X X X

KIND2 [CMST16] X

ABC [BM10, EMB11] X

Table 4.1: IC3 Modulo Theories – Overview

Essentially, IC3 checks if a clause C in Fi is inductive relative to Fi, i.e.,

Fi(X) ∧ T (X,X ′) |= C(X ′)

During the propagation phase, IC3 may discover that Fi−1 = Fi, thus

proving that S |= P . If it is not the case, IC3 adds a new frame to the

sequence and iterates the two phases.

Unlike the other techniques, replacing the underlying SAT solver with

an SMT solver does not give an efficient and effective IC3-based procedure

for checking invariants of infinite-state transition systems. It is because

IC3 requires relatively much more involvement from the underlying solver.

There have been attempts to lift the ideas of IC3 to deal with the tran-

sition system expressed in different first-order theories – Table 4.1 shows

an overview of the IC3-based approaches to various theories implemented

in tools.

4.3 State of the Art

There are not many tools that deal with NRA and NT A transition sys-

tems. In fact, IC3-based methods are non-existent for the case of NRA
and NT A (see Table 4.1).

In literature, we have found two classes of approaches: based on non-

linear solving and based on linearization.

38



4.3. STATE OF THE ART

Nonlinear Solving

The iSAT3 SMT solver is also a bounded model checker for transition sys-

tems. It supports both NRA and NT A, and it additionally has support

for some kinds of differential equations. iSAT3 is built on an SMT solver

based on numeric techniques (interval arithmetic), and can provide results

that are accurate up to the specified precision. In fact, besides, to “safe”

and “unsafe” answers, iSAT3 may return “maybe unsafe” when it finds

an envelope of given precision that may (but is not guaranteed to) contain

a counterexample. Recently proposed in [MSN+16], iSAT3 has been ex-

tended to use an interpolation-based [KB11, MSN+16] approach to prove

invariants.

Another relevant tool is dReach [KGCC15], a bounded model checker

implemented on top of the dReal [GKC13] SMT solver, that adopts nu-

merical techniques similar to iSAT3. dReach has an expressiveness iden-

tical to iSAT3, but since it is a bounded model checker, it is unable to

prove properties.

Linearization

The work in [CGKT16] follows a reduction-based approach to check in-

variants of NRA transition systems. It over-approximates the non-linear

terms with a coarse abstraction, encoding into LRA some weak proper-

ties of multiplication like identity and sign. Another similar approach is

presented in [MFK+16] in the context of program analysis. The idea is to

find a (tight) convex approximation of polynomials in form of polyhedron,

thus obtaining a conservative linear transition system. To the best of our

knowledge, there is no available implementation of the approach [MFK+16]

in a program analysis tool.

39



CHAPTER 4. VERIFICATION MODULO THEORIES

40



Chapter 5

Systems Design and Verification

Tools

Verification is an important step in systems design and development. In

fact, more time and effort are spent on verification than construction.

Model-based development offers a way to perform early design verifica-

tion (using some verification backend) while also dealing with the system’s

complexity. In model-based development, a model is used to describe the

possible system behavior. Using models often lead to the discovery of

incompleteness, ambiguities, and inconsistencies in the systems specifica-

tions. Model-based development has inspired different design languages

and tools. Most of them follow the approach of hierarchical decomposition-

based design, which allows for reusing of common parts of a system, and

thus helping in designing of complex systems.

In this chapter, we discuss the hierarchical decomposition-based design

approach, and also overview several design languages and tools that are

widely used in industry and academia. Later, we mention some challenges

in the integration of verification backends with design tools.

41



CHAPTER 5. SYSTEMS DESIGN AND VERIFICATION TOOLS

5.1 Hierarchical Decomposition-based Design

The main idea of hierarchical decomposition-based design (HBD) is to de-

compose a system into subsystems and their interaction, at different ab-

straction layers of abstraction, where a system/subsystem is represented

by a component.

Components

A component is a design entity which has concise and rigorous interfaces –

input and output ports. The input ports are controlled by the environment

and are fed to the component, whereas the output ports are controlled by

the component for communicating to the environment. A component can

be further composed of other components called sub-components, where

decomposition of a component into sub-components can be seen as re-

finement (moving from higher abstraction layer to the lower one). The

interaction among components can be synchronous (all components per-

form steps at the same time) or asynchronous (each component can take

steps autonomously).

Library of Predefined Components. A key characteristic of the hierarchical

decomposition-based design is the reuse of components. Often components

that are commonly-used are collected in the form of a component library.

The components in the library are often called basic components.

Hierarchical Decomposition

The decomposition of the components into sub-components defines the

hierarchy of a design. (This view is often called system architecture.)

Hierarchical decomposition preserves ports of the components. A top-level

component is called system component.

42



5.1. HIERARCHICAL DECOMPOSITION-BASED DESIGN

  

A

B C

D F

E

Input Port

Output Port

C

E

Figure 5.1: An example of hierarchical decomposition

Fig. 5.1 shows an example of hierarchical decomposition: the system

component A is decomposed into components B and C, and similarly com-

ponent B is decomposed into components D, E, and F.

Implementation of Components.

The implementation (behavior) of a component can be given in the form

of dataflow or as a state machine. Intuitively, a dataflow is a directed

graph where vertices are components and an edge can be seen as a flow

from outputs of basic components to inputs of other basic components.

It does not have a state. For example, in Fig. 5.1 the implementation

of the component E is given in terms of dataflow. On the other hand, an

implementation of a component based on a state machine has its own state

43



CHAPTER 5. SYSTEMS DESIGN AND VERIFICATION TOOLS

and internal transitions. For example, the implementation of component

C in Fig. 5.1.

Comparison with Contract-based Design

Contract-based design is an emerging paradigm for complex systems de-

sign. It is based on mathematical foundations and has been designed keep-

ing formal verification in consideration. In fact, one main goal of contracts

is to allow for compositional reasoning which in turns improves the sys-

tems verification task. It bears significant similarities with hierarchical

decomposition-based design: a contract-based design is also composed of

interaction among components. However, a key difference is that each

component is associated with a contract – a contract is a clear description

of the expected behavior of the component. More precisely, a contract is a

pair of properties: an assumption and a guarantee that must be satisfied

respectively by the environment and the component.

5.2 Design Languages and Tools

We focus on languages and tools for discrete-time systems design. There

are several languages and tools used in industry and academics for systems

design. Most of them support the ideas of HBD. These include, but limited

to:

Languages: AADL, ALTARICA, LUSTRE, SysML, Verilog,

Tools: AF3, CHESS, COMPASS, Simulink, SCADE, nuXmv &

OCRA.

AADL. Architectural Analysis and Design Language (AADL) [FLVC04]

focuses on defining system architectures. It is designed for specification,

44



5.2. DESIGN LANGUAGES AND TOOLS

analysis, and automatic code generation of safety-critical systems. It has

become an industrial standard for the description of systems. The imple-

mentation of a component can be given as dataflow or state machine. It

supports modeling of infinite-state systems. Verification of AADL models

has been addressed in several works, e.g. [BCK+11].

ALTARICA. The ALTARICA language [alt, APGR99] is a language for

the modeling of systems. An ALTARICA model describes a hierarchy

of nodes, where nodes can be seen as components in the context of HBD.

The implementation of a node is given as dataflow. The language supports

for modeling of both synchronous as well asynchronous designs. Although

ALTARICA is a textual language, there exist various graphical interfaces

– for instance ALTARICA-Studio.

LUSTRE. The LUSTRE language [CPHP87] is a dataflow language for

describing synchronous designs. A design in LUSTRE is a hierarchy of

nodes (components). It can be used to model infinite-state systems. There

are several verification tools for LUSTRE models: Kind2 [CMST16],

JKind [Gac16], Zustre [KGC16a] to name a few.

SysML. The graphical Systems Modeling Language (SysML) is a

lightweight version of the Unified Modeling Language (UML), (with some

extensions) to model discrete-timed systems. Due to the fact that it is very

close to UML, it has found a lot of success in the industry. However, its

semantics is semi-formal and thus makes the verification task difficult. A

SysML design is described as hierarchy of blocks (components) with block

parts and flow ports. The behavior (implementation) of a block is given

by a state machine or in terms of dataflow.

45



CHAPTER 5. SYSTEMS DESIGN AND VERIFICATION TOOLS

Verilog. Verilog [ver06] is a high-level hardware description language,

that is widely used in the industry for designing hardware systems. A

Verilog model is described as a hierarchy of modules (components) with

clear input and output interface. The properties of Verilog models are

usually written in the SystemVerilog assertions language. There exist many

industrial and academic verification tools for Verilog models.

AF3. AF3 [aut] is an open-source graphical design environment. It sup-

ports modeling, simulation, code-generation and verification of designs.

Synchronous and infinite-state systems can be modeled in AF3. The im-

plementation of components can be given as dataflow or state machines.

CHESS. The CHESS [che] toolset aims at providing tools and technolo-

gies for the design and analysis of complex systems. The tool-set also

includes a graphical interface for modeling. It also provides support for

design verification. Similar to earlier design environments, a component’s

implementation can be given as dataflow or state machine in the CHESS

framework. Moreover, it also provides support for automatic code genera-

tion.

COMPASS. The COMPASS tool-set provides graphical design environ-

ment supporting both the hierarchical decomposition- and the contract-

based design approaches. The modeling language is called System-Level

Integrated Modeling (SLIM) [BCR+09] language, which is an extension

of the AADL language and has a formal semantics. The SLIM language

can be used to model synchronous and infinite-state designs. The imple-

mentation of components can be given as dataflow or state machines. The

tool-set also contains formal verification tools.

46



5.2. DESIGN LANGUAGES AND TOOLS

Simulink. Simulink [simb] is a widely-used industrial design environment

for systems development and simulation. It is basically a graphical block

diagram environment, in which a system can be modeled as hierarchical

decomposition-based design – a Simulink block can be seen as a compo-

nent. It comes with a library of blocks that includes: continuous and dis-

crete dynamic blocks, algorithmic blocks, and structural blocks. Simulink

is extended by specialized block sets (add-on products). For instance,

Stateflow extends Simulink for modeling control logic – develop state

machines and flow charts by means of graphical and tabular representa-

tion. Both synchronous as well as asynchronous designs can be modeled

in Simulink. It can also model infinite-state systems. Another powerful

feature of Simulink is the ability to automatically generate code for cer-

tain kinds of designs. A weak point of Simulink is that the semantics of

Simulink is not formally defined, rather they are given by the Simulink

simulator. Verification of models is usually done by Simulink Design

Verifier.

SCADE. SCADE [sca] is another widely-used graphical design environ-

ment supporting the HBD approach. Similar to Simulink, the components

in SCADE are called blocks. SCADE is further divided into SCADE

Architect and SCADE Suite. SCADE Architect is used to describe the

architecture of a system and is based on the SysML language. SCADE

Suite is based on the SCADE language which provides capability to model

the implementation of the systems components. It also provides function-

ality for verification and validation, and code generation. It allows for

modeling synchronous and also infinite-state systems. Unlike Simulink,

the SCADE language has a precise formal semantics.

47



CHAPTER 5. SYSTEMS DESIGN AND VERIFICATION TOOLS

C
o
n
tra

cts

S
ta

te
M

a
ch

in
e
s

D
a
ta

F
lo

w

In
fi
n
ite

-sta
te

S
y
ste

m
s

S
y
n
ch

ro
n
o
u
s

A
sy

n
ch

ro
n
o
u
s

AADL X X X X X

ALTARICA X X X

LUSTRE X X X

SysML X X X X

Verilog X X X

Simulink X X X X X

SCADE X X X X

COMPASS X X X X X

AF3 X X X X X

CHESS X X X X X

nuXmv & OCRA X X X X X

Table 5.1: Overview of the features provided by the design languages and tools (languages

above and tools below)

nuXmv and OCRA. nuXmv [CCD+14] allows for modeling synchronous

and infinite-state systems. It also provides several formal verification tech-

niques for the analysis. A model in the nuXmv language can be de-

scribed as a hierarchy of modules (components in the sense of HBD).

OCRA [CDT13] is a tool that provides formal analysis support for

contract-based designs. It is built on top of nuXmv. The OCRA lan-

guage (that is an extension of the nuXmv language) can be used to model

infinite-state systems, and also supports synchronous and asynchronous

models.

48



5.3. VERIFICATION SUPPORT

5.3 Verification Support

As mentioned earlier, verification is an important activity in system design

development. We have seen that several design languages and tools are

used in industry, and some of the tools come with verification support.

However, the support depends on what kind of models can be handled by

the verification backends. It may be the case that a certain class of models

cannot be checked by the verification backend. For instance, the design

languages and tools can model infinite-state systems (see Table 5.1) and

some of those systems may have nonlinear dynamics. Unfortunately, the

verification capabilities of these design tools is limited to the linear case.

In this thesis, we propose a technique to prove properties of transition

systems with nonlinear dynamics. We also aim at integrating it with a

design tool. Nevertheless, integrating more than one verification backend

gives more confidence in the verification results.

There are some important points to consider when integrating verifica-

tion backends with design languages and tools:

• Handling of the hierarchical decomposition of a design and the imple-

mentations (dataflow and state machines) of its components.

• The languages of verification tools mostly contain a small set of lan-

guage constructs. This is not the case for design languages as they

need to offer user-friendliness and flexibility in modeling.

• Verification tools are based on precise formal semantics, while some

design languages and tools use semi-formal semantics.

• Verification properties can be specified either by annotating or em-

bedding in the form of monitors in designs. An annotated property

can be expressed in temporal logic formulae or using some property

49



CHAPTER 5. SYSTEMS DESIGN AND VERIFICATION TOOLS

specification language. The annotation task may not be easy for de-

sign engineers. Therefore, representing properties using monitors in

the design is often preferred. Intuitively, a monitor can be seen as

a particular component that implements the property logic, and its

output port indicates the current status of the property.

• The design languages are often different from the ones used by ver-

ification backends. A model transformation is performed to connect

design tools with verification backends. The model transformation is

done by a compiler. Most of the design tools come with a black-box

compiler – black-box in the sense that there is no access to the inter-

nals of the compiler. On the other hand, a white-box compiler allows

access to its internal data structures.

• Due to the fact that the languages for both design and verification

tools continuously evolve – new language constructs, changes in syntax

and semantics, etc. – the model transformation is a complex task.

Moreover, dealing with the hierarchy and wide range of components

(in the components library) in designs is also a challenge for model

transformation.

50



Part II

Satisfiability Modulo Nonlinear

Arithmetic and Transcendental

Functions





Overview

SMT has been a thriving research area since its inception, also

leveraging developments in SAT, with applications in formal verifica-

tion [CMT13, FCN+10, ACKS02], planning [CMR15, CMR16, CMR17],

security [AR12, ARTW16, TdHRZ17], and synthesis [RDK+15, BBC16,

RKFB17, CMR16].

Powerful and effective SMT techniques and tools are available for the

quantifier-free theories of Uninterpreted Functions (UF) and Linear Arith-

metic (LA), either over the reals (LRA) or the integers (LIA), as well as

their combinations (UFLRA, UFLIA, UFLIRA). A fundamental chal-

lenge is to go beyond the linear case, by introducing nonlinear polynomials

– over the reals (NRA) or over the integers (NIA) – plus transcendental

functions such as exponentiation and trigonometric functions (NT A). In

fact, the expressive power of nonlinear arithmetic and transcendental func-

tions is required by many application domains (e.g., railways, aerospace,

control software, and cyber-physical systems).

Unfortunately, dealing with nonlinearity is a tough challenge. Going

from SMT(LRA) to SMT(NRA) yields a complexity gap that results in

a computational barrier in practice – most available complete solvers rely

on Cylindrical Algebraic Decomposition (CAD) techniques [Col74], which

require double exponential time in worst case. Adding transcendental func-

tions to NRA exacerbates the problem even further, because reasoning on

NT A has been shown to be undecidable [Ric68]. Similarly, reasoning in

53



NIA is undecidable [Mat93] (the result of Hilbert’s 10th problem).

In this part, we take on the challenge of dealing with NRA, NIA, and

NT A in SMT. Our main contributions are:

1. We propose a practical and unifying approach, referred to as Incre-

mental Linearization, which trades the use of expensive, exact solvers

for nonlinear arithmetic for an abstraction-refinement loop on top of

much less expensive solvers for linear arithmetic and uninterpreted

functions. It also exploits the incrementality feature provided by the

later solvers.

2. Irrational numbers are basically inevitable with the most common

transcendental functions, such as exponential and sine, as shown by

the Hermite and Niven theorems [Niv61]. We address the challenge to

obtain provably correct (rational-coefficient) approximations in LRA.

3. We provide an encoding to deal with the periodicity property of

trigonometric functions.

4. In order to increase the chances of finding a model for NRA and

NIA, we use heuristic method that relies on a linear arithmetic and

uninterpreted functions solver.

5. In the case of NT A, we adopt a logical method to conclude the exis-

tence of a solution without explicitly constructing it.

6. We have implemented incremental linearization within the MathSAT

SMT solver [CGSS13]. We experimentally evaluate MathSAT on a

large set of benchmarks and contrast it against various SMT solvers.

We cover the points 1-5 in Chapter 6 and point 6 in Chapter 7.

54



Chapter 6

SMT via Incremental Linearization

Incremental linearization is based on an abstraction-refinement loop, using

LA and UF as abstract domain. The uninterpreted functions are used to

model nonlinear and transcendental functions that are iteratively and in-

crementally axiomatized with a lemma-on-demand approach. Specifically,

we eliminate spurious interpretations in the abstract domain, by tighten-

ing the piecewise-linear envelope around the (uninterpreted counterpart of

the) transcendental functions. The underlying rationale is that, for many

practical problems, reasoning with full precision over nonlinear and tran-

scendental functions may not be necessary.

In the abstract domain, nonlinear multiplication between variables is

modeled as a binary uninterpreted function. When spurious models are

found, the abstraction is tightened by the incremental introduction of linear

constraints, including tangent planes resulting from differential calculus,

and monotonicity constraints.

In order to deal with transcendental functions, we model them with

a unary uninterpreted function, and we rely on several insights. We use

Taylor series to exactly compute suitable accurate rational coefficients for

the piecewise-linear envelopes. Notice that, nonlinear (Taylor) polynomi-

als are only used to numerically compute the coefficients, i.e., no SMT

55



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

solving in the theory of nonlinear arithmetic is needed. The refinement is

based on the addition, in the abstract domain, of piecewise-linear axiom in-

stantiations, which upper- and lower-bound the candidate solutions, ruling

out spurious interpretations. To compute such piecewise-linear bounding

functions, the concavity of the curve is taken into account to identify the

actual approximation interval. Moreover, to deal with trigonometric func-

tions, we leverage the property of periodicity, so that the axiomatization

is only done in the interval between −π and π, and deal with the external

intervals by reduction.

Structure of the Chapter. To describe the approach in more detail, we

first present the procedure based on incremental linearization for solving

the SMT(NT A) problem. In this way, we address NRA and NT A to-

gether since NRA is a strict subset of NT A. §6.1 provides a high-level

description of the procedure for SMT(NT A). In §6.2 we discuss the refine-

ment, while in §6.3 we focus on how to check for spuriousness and detect

satisfiability. In §6.4 we present the correctness of the approach. Then,

in §6.5 we move the attention towards handling the SMT(NIA) problem

with incremental linearization. Interestingly, going from NRA (a subset

of NT A) to NIA requires little modification in the procedure we present.

In §6.6 we discuss related work.

6.1 Incremental Linearization for SMT(NT A)

We now provide a high-level description of the algorithm for SMT solving

on NT A (and hence NRA) based on incremental linearization. Further

details will be provided in the next sections.

To simplify the presentation, and when not explicitly stated otherwise,

we often implicitly assume w.l.o.g. that all multiplications in the input

56



6.1. INCREMENTAL LINEARIZATION FOR SMT(NT A)

formula ϕ are either between variables (e.g., x∗y) or between one constant

and one variable (e.g., 3x), and that all transcendental functions in ϕ are

applied to variables (e.g., exp(x)). This can be obtained by recursively

substituting each non-variable term t inside multiplications and transcen-

dental function applications with a fresh variable xt, and by conjoining

(xt = t) to ϕ.

6.1.1 The Main Procedure

The main algorithm is shown in Fig. 6.1. The main function

SMT-NTA-check takes as input a formula ϕ containing non-linear con-

straints with polynomials and transcendental functions, and returns a

Boolean value asserting if ϕ is satisfiable or not. When the formula is

found to be unsatisfiable it returns also the set of UFLRA constraints Γ

such that the formula ϕ∧
∧

Γ can be shown unsatisfiable using an UFLRA
SMT solver. Notice that, SMT-NTA-check is not guaranteed to termi-

nate, so that we implicitly assume that it is stopped as soon as some given

resource budget (e.g., time, memory, number of iterations) is exhausted.

In order to deal with transcendental models, we adopt a mechanism

based on rational approximations of irrational values; a variable ε keeps

track of the current precision of approximation, and it is incremented on

demand.

First, in line 1 the formula undergoes some NT A-satisfiability-

preserving preprocessing step, which produces the formula ϕ′ =̇ ϕ ∧ ϕshift
by introducing some fresh real variables ωx and by conjoining to ϕ a for-

mula ϕshift which defines univocally the values of the ωx’s in terms of some

variables x’s in ϕ (see §6.2).

Then the formula ϕ′ is abstracted into an over-approximating formula

ϕ̂ over the combined theory of linear arithmetic and uninterpreted func-

tions (UFLRA) by invoking SMT-initial-abstraction (line 2). ϕ̂ is

57



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

〈bool, constraint-set〉 SMT-NTA-check (ϕ):

1. ϕ′ := SMT-preprocess(ϕ)

2. ϕ̂ := SMT-initial-abstraction(ϕ′)

3. Γ := ∅
4. ε := initial-precision ()

5. while true:

6. 〈sat, µ̂〉 := SMT-UFLRA-check (ϕ̂ ∧
∧

Γ)

7. if not sat:

8. return 〈false, Γ〉
9. 〈sat,Γ′〉 := check-refine (ϕ′, ϕ̂, µ̂, ε)

10. if sat:

11. return 〈true, ∅〉
12. Γ := Γ ∪ Γ′

Figure 6.1: The main procedure for solving SMT(NT A) via abstraction to

SMT(UFLRA) and refinement

the result of replacing each nonlinear term x ∗ y with f∗(x, y), and each

transcendental term tf(x) with ftf(x), s.t. f∗(.) and ftf(., .) are uninter-

preted functions, and the symbol π with the new symbol π̂ (see §6.2). (We

remark that, linear multiplications, like e.g., c∗x where c is a constant, are

not replaced.) The set of constraints Γ is initialized to the empty set, and

the precision variable ε is initialized to some (small) real value by calling

the function initial-precision (lines 3-4).

Then the algorithm enters a loop (lines 5-12). At each iteration, the ap-

proximation ϕ̂ of ϕ′ is refined by adding new UFLRA constraints to Γ that

rule out spurious solutions. The loop maintains the invariant that ϕ̂∧
∧

Γ

is an over-approximation of ϕ, (see Lemma 6.7). The process iterates until

either the formula ϕ̂∧
∧

Γ is proved unsatisfiable in SMT(UFLRA) by in-

voking the standard SMT-solving function SMT-UFLRA-check (lines 6-

8), or ϕ̂∧
∧

Γ is proved UFLRA-satisfiable and the satisfiability result can

be lifted to a satisfiability result for the original formula ϕ by means of a

58



6.1. INCREMENTAL LINEARIZATION FOR SMT(NT A)

refinement process (lines 9-11). The function check-refine (see §6.1.2)

takes as input the formula ϕ′, its abstracted version ϕ̂, the current abstract

model µ̂ and the precision ε, and it returns 〈true, ∅〉 if it achieves prov-

ing the NT A-satisfiability of ϕ′, it returns 〈false,Γ′〉 if it fails, Γ′ being a

non-empty set of UFLRA constraints that rule out µ̂ (and other spurious

solutions). When none of the above loop-exit condition occurs, the novel

constraints in Γ′ which were found by check-refine are added to Γ before

entering into next loop.

Unsatisfiable-core Extraction. As a byproduct of the procedure in Fig. 6.1,

since state-of-the-art SMT solvers for UFLRA can return unsatisfiable

cores when the input formula is found unsatisfiable, we can easily modify

SMT-NTA-check to produce also an unsatisfiable core for NT A when

ϕ is NT A-unsatisfiable. This is done by a variation of the lemma-lifting

technique in [CGS11]: when SMT-UFLRA-check returns false, then it

can be asked to produce an unsatisfiable core ψ̂ of ϕ̂ ∧ Γ. Then we drop

from ψ̂ all the conjuncts which belong either to Γ or to the abstraction

of ϕshift, and produce the final NT A unsatisfiable core by un-abstracting

the result, rewriting back each f∗, ftf and π̂ into ∗, tf and π respectively.

The conjuncts in
∧

Γ and in the abstraction of ϕshift are safely ignored be-

cause they would respectively produce NT A-valid subformulae and simple

definitions of variables which do not occur in ϕ. (See §6.2.)

6.1.2 Abstraction Refinement and Spuriousness Check

The process of checking for spuriousness and refining the abstraction is

carried out by the procedure check-refine (reported in Fig. 6.2). check-

refine first calls the function check-model on the original formula ϕ, the

abstract model µ̂ and the value ε, which tries to determine whether µ̂ does

indeed imply the existence of a model for ϕ (lines 1-2). (check-model

59



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

〈bool, constraint-set〉 check-refine (ϕ, ϕ̂, µ̂, ε):

1. if check-model (ϕ, µ̂, ε):

2. return 〈true, ∅〉
3. Γ := block-spurious-product-terms(ϕ̂, µ̂) # refinement of products

4. while true: # refinement of transcendental functions,

# for progressively improving precision

5. Γ := Γ ∪ block-spurious-transcendental-terms(ϕ̂, µ̂, ε)

6. if Γ 6= ∅:
7. return 〈false,Γ〉
8. ε := improve-precision (ε)

9. if check-model (ϕ, µ̂, ε):

10. return 〈true, ∅〉

Figure 6.2: The main procedure for spuriousness check and refinement

is described in §6.3). The check is formulated as a SMT(UFLRA) search

problem over a constrained version of ϕ, guided by the current abstract

model and the current precision, either yielding a sufficient criterion for

concluding the existence of a model for ϕ, returning true, or stating that

µ̂ is spurious, returning false. If check-model succeeds, then check-

refine returns 〈true, ∅〉, and the whole process terminates. Otherwise µ̂ is

spurious –because it violates some multiplications, or some transcendental

functions, or both– and check-model could not prove the existence of

another model within the current precision. (Nevertheless, one such model

could exist, and might be found using a better precision.)

The rest of the procedure tries to refine the spurious model µ̂ by adding

UFLRA refinement constraints that rule out µ̂ (and other spurious solu-

tions), which are collected into the set Γ, interleaving this process with calls

to check-model with increasingly improved precision. This is performed

in two steps.

The first step is the refinement of products (line 3). block-spurious-

product-terms is invoked on ϕ̂ and µ̂ and looks for UFLRA constraints

60



6.1. INCREMENTAL LINEARIZATION FOR SMT(NT A)

on multiplication terms in the form f∗(x, y) occurring in ϕ̂ which are vi-

olated by µ̂. These constraints are stored in Γ. Importantly, this process

does not depend on the precision ε. (block-spurious-product-terms

is described in §6.2.)

The second step is the refinement of transcendental functions, which is

performed for progressively-improving precision (lines 4-10). At each iter-

ation, first block-spurious-transcendental-terms is invoked on ϕ̂,

µ̂ and ε, and looks for UFLRA constraints on transcendental terms in the

form ftf(x) occurring in ϕ̂ which are violated by µ̂. These constraints

(if any) are added to Γ. (block-spurious-transcendental-terms is

described in §6.2.) Then, if Γ contains at least one refinement constraint

ruling out µ̂, then 〈false,Γ〉 is returned. If not so, then no result in ei-

ther direction was obtained with the current precision. Then, the current

precision is increased (in the current implementation, we simply reduce ε

by one order of magnitude), and check-model is invoked again with the

improved precision, returning 〈true, ∅〉 if it succeeds, like in lines 1-2. The

whole process in lines 5-10 is iterated until either ϕ is found satisfiable, or

some refinement constraint is produced (or the process is terminated due

to resource-budget exhaustion).

Remark 1. It is important to notice that Fig. 6.2 describes the strat-

egy which is currently implemented, which is only one of the many al-

ternative strategies by which refinement can be performed. E.g., the

calls to check-model, block-spurious-product-terms and block-

spurious-transcendental-terms are not bound to be executed nec-

essarily in this sequence, and can be interleaved in different ways.

For instance, one could adopt the strategy to call block-spurious-

transcendental-terms only if Γ = ∅, so that check-refine will be

repeatedly called to refine only multiplications (line 3) until a fixpoint is

reached, and to refine the transcendental functions only after then. Further

61



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

information on these issues will be provided in §6.2 and §7.1.

6.2 Abstraction Refinement

In this section we focus on the refinement part of our procedure. We first

describe how to perform the refinement of multiplication terms f∗(x, y)

in the function block-spurious-product-terms (§6.2.1) and then how

to perform refinement of transcendental functions in the function block-

spurious-transcendental-terms (§6.2.2).

6.2.1 Refinement for NRA

We describe the refinement of multiplication terms in the function block-

spurious-product-terms. The refinement is based on selecting suit-

able instantiations of given constraint schemata which prevent spurious

assignments to multiplication terms. We consider the refinement constraint

schemata in Fig. 6.4, where x, xi, y, yi are variables and a, b are generic ra-

tional values. It is straightforward to verify that all the constraints are

valid formulae in any theory interpreting f∗() as ∗. Notice that, the Zero

constraints refer to a single multiplication term, that the Sign, Commuta-

tivity and Monotonicity constraints refer to pairs of multiplication terms,

whereas the Tangent plane constraints refer to a single multiplication term

and a single point (a, b). The Zero, Sign, Commutativity and Monotonic-

ity constraints are self-explanatory; the Tangent-plane constraints, instead,

deserve some explanations.

The equalities in the Tangent-plane constraints are providing multipli-

cation lines which enforce the correct value of f∗(x, y) when x = a or y = b;

the inequalities are providing bounds for f∗(x, y) when x and y are not on

the multiplication lines. The constraints specialize the notion of tangent

plane to the case of nonlinear multiplication. Geometrically, the surface

62



6.2. ABSTRACTION REFINEMENT

(a) x ∗ y (b) x ∗ y (top view)

(c) x ∗ y and tangent plane (d) x ∗ y and tangent plane (top view)

Figure 6.3: Multiplication function and tangent plane

63



C
H

A
P

T
E

R
6.

S
M

T
V

IA
IN

C
R

E
M

E
N

T
A

L
L

IN
E

A
R

IZ
A

T
IO

N

Zero: ∀x, y.((x = 0 ∨ y = 0)↔ f∗(x, y) = 0)

∀x, y.(((x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0))↔ f∗(x, y) > 0)

∀x, y.(((x < 0 ∧ y > 0) ∨ (x > 0 ∧ y < 0))↔ f∗(x, y) < 0)

Sign: ∀x, y.f∗(x, y) = f∗(−x,−y)

∀x, y.f∗(x, y) = −f∗(−x, y)

∀x, y.f∗(x, y) = −f∗(x,−y)

Commutativity: ∀x, y.f∗(x, y) = f∗(y, x)

Monotonicity: ∀x1, y1, x2, y2.((abs(x1) ≤ abs(x2) ∧ abs(y1) ≤ abs(y2))→ abs(f∗(x1, y1)) ≤ abs(f∗(x2, y2)))

∀x1, y1, x2, y2.((abs(x1) < abs(x2) ∧ abs(y1) ≤ abs(y2) ∧ y2 6= 0)→ abs(f∗(x1, y1)) < abs(f∗(x2, y2)))

∀x1, y1, x2, y2.((abs(x1) ≤ abs(x2) ∧ abs(y1) < abs(y2) ∧ x2 6= 0)→ abs(f∗(x1, y1)) < abs(f∗(x2, y2)))

Tangent plane: ∀x, y.(f∗(a, y) = a ∗ y ∧ f∗(x, b) = b ∗ x∧
(((x > a ∧ y < b) ∨ (x < a ∧ y > b))→ f∗(x, y) < TanPlane∗,a,b(x, y))∧
(((x < a ∧ y < b) ∨ (x > a ∧ y > b))→ f∗(x, y) > TanPlane∗,a,b(x, y)))

Figure 6.4: The refinement UFLRA constraint schemata for multiplication (We recall that “abs(x)” is a shortcut for

“ite(x < 0,−x, x)” and that “TanPlane∗,a,b(x, y)” is a shortcut for “b ∗ x+ a ∗ y − a ∗ b”.)

64



6.2. ABSTRACTION REFINEMENT

generated by the multiplication function mul(x, y) =̇ x ∗ y is shown in

Fig. 6.3a and 6.3b. This kind of surface is known in geometry as hyper-

bolic paraboloid. A hyperbolic paraboloid is a doubly-ruled surface, i.e.,

for every point on the surface, there are two distinct lines projected from

the surface such that they pass through the point. A tangent plane to a

hyperbolic paraboloid has the property that the two projected lines from

the surface are also in the tangent plane, and they define how the plane

cuts the surface. In case of the multiplication surface, the projected lines

basically lie on the surface (see Fig. 6.3c and 6.3d).

Let µ̂ be the spurious interpretation which is given as input to block-

spurious-product-terms. Let f∗(x, y) be one generic multiplication

term occurring in ϕ̂, let a =̇ µ̂[x] and b =̇ µ̂[y]. If µ̂[f∗(x, y)] 6= a ∗ b,
then f∗(x, y) is a spurious term in µ̂. The idea is thus to add refinement

constraints to block the spurious terms f∗(x, y) in ϕ̂ so that a new inter-

pretation will be constructed. In what follows, ST µ̂∗ denotes the set of

multiplication terms in ϕ̂ which are made spurious by µ̂.

Single-term Refinements. If f∗(t1, s1) is the only multiplication term oc-

curring in a constraint schema ∀x, y.ψ in Fig. 6.4 (i.e., a Zero constraint

schema), and f∗(t1, s1) ∈ ST µ̂∗ , then we say that µ̂ violates ∀x, y.ψ on

f∗(t1, s1) wrt. f∗(x, y) if and only if ψ{x, y 7→ µ̂[t1], µ̂[s1]} is false in any

theory interpreting f∗() as ∗. Then, for every term f∗(t1, s1) ∈ ST µ̂∗ ,
and for every constraint schema ∀x, y.ψ as above, if µ̂ violates ∀x, y.ψ
on f∗(t1, s1) wrt. f∗(x, y), then we can produce the refinement constraint

ψ{x, y 7→ t1, s1}. By construction, µ̂ 6|= ψ′, that is, ψ′ rules out µ̂.

Double-term Refinements. Similarly, if f∗(t, s) and f∗(u,w) for some terms

s, t, u, w are the only multiplication terms occurring in a constraint schema

∀x.ψ (i.e., a Sign, Commutativity, or Monotonicity constraint schema),

65



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

and f∗(t1, s1), f∗(u1, w1) ∈ ST µ̂∗ s.t. 〈f∗(t, s), f∗(u,w)〉 can be mapped into

〈f∗(t1, s1), f∗(u1, w1)〉 by some variable instantiation σ : x 7→ t, we say that

µ̂ violates ψ on 〈f∗(t1, s1), f∗(u1, w1)〉 wrt 〈f∗(t, s), f∗(u,w)〉 if and only if

ψ{x 7→ µ̂[t]} is false in any theory interpreting f∗() as ∗. Then, for every

pair of terms 〈f∗(t1, s1), f∗(u1, w1)〉 and for every constraint schema ψ as

above, if µ̂ violates ψ on f∗(t1, s1) wrt 〈f∗(t, s), f∗(u,w)〉 as above, then we

can produce the refinement constraint ψ′ =̇ ψ{x 7→ t}. By construction,

µ̂ 6|= ψ′, that is, ψ′ rules out µ̂.

Tangent-Plane Refinements. For every term f∗(t1, s1) ∈ ST µ̂∗ , and for each

Tangent-plane constraint schema ∀x, y.ψ, we can produce the refinement

constraint ψ′ =̇ ψ{x, y, a, b 7→ t1, s1, µ̂[t1], µ̂[s1]}. By construction, µ̂ 6|= ψ′,

that is, ψ′ rules out µ̂.

Example 6.1. Consider the case where ϕ contains the multiplications

u1 ∗ w1 and u2 ∗ w2, so that ϕ̂ contains the multiplication terms f∗(u1, w1)

and f∗(u2, w2). Let µ̂ be a spurious assignment s.t.

µ̂[u1] = 2, µ̂[w1] = 3, µ̂[f∗(u1, w1)] = 7, µ̂[u2] = 3, µ̂[w2] = −4,

µ̂[f∗(u2, w2)] = 5.

µ̂ violates the third Zero constraint on f∗(u2, w2), it does not violate any

Sign or Commutativity constraint, and it violates the three Monotonicity

constraints on 〈f∗(u1, w1), f∗(u2, w2)〉. Overall, this leads to the addition

of the Zero and Monotonicity constraints, plus the Tangent-plane ones in

the points (2, 3) and (3,−4), which are reported at the top of Fig. 6.5.

If ϕ contains also f∗(u1,−w1) and f∗(w2, u2), and if µ̂[f∗(u1,−w1)] = −3

and µ̂[f∗(w2, u2)] = 9, then we add also the Sign and Commutativity con-

straints in the bottom part of Fig. 6.5 (plus the other Zero, Monotonicity

and Tangent-plane constraints). 4

66



6.2.
A

B
S
T

R
A

C
T

IO
N

R
E

F
IN

E
M

E
N

T

Zero: ((u2 < 0 ∧ w2 > 0) ∨ (u2 > 0 ∧ w2 < 0))↔ f∗(u2, w2) < 0

Monotonicity: (abs(u1) ≤ abs(u2) ∧ abs(w1) ≤ abs(w2))→ abs(f∗(u1, w1)) ≤ abs(f∗(u2, w2))

(abs(u1) < abs(u2) ∧ abs(w1) ≤ abs(w2) ∧ w2 6= 0)→ abs(f∗(u1, w1)) < abs(f∗(u2, w2))

(abs(u1) ≤ abs(u2) ∧ abs(w1) < abs(w2) ∧ u2 6= 0)→ abs(f∗(u1, w1)) < abs(f∗(u2, w2))

Tangent plane: f∗(2, w1) = 2 ∗ w1

f∗(u1, 3) = 3 ∗ u1
((u1 > 2 ∧ w1 < 3) ∨ (u1 < 2 ∧ w1 > 3))→ f∗(u1, w1) < 3 ∗ u1 + 2 ∗ w1 − 6

((u1 < 2 ∧ w1 < 3) ∨ (u1 > 2 ∧ w1 > 3))→ f∗(u1, w1) > 3 ∗ u1 + 2 ∗ w1 − 6

f∗(3, w2) = 3 ∗ w2

f∗(u2,−4) = −4 ∗ u2
((u2 > 3 ∧ w2 < −4) ∨ (u2 < 3 ∧ w2 > −4))→ f∗(u2, w2) < −4 ∗ u2 + 3 ∗ w2 + 12

((u2 < 3 ∧ w2 < −4) ∨ (u2 > 3 ∧ w2 > −4))→ f∗(u2, w2) > −4 ∗ u2 + 3 ∗ w2 + 12

Sign: f∗(u1, w1) = −f∗(u1,−w1)

Commutativity: f∗(u2, w2) = f∗(w2, u2)

Figure 6.5: Top: example of instantiation of constraint schemata for the multiplication terms f∗(u1, w1) and f∗(u2, w2),

where µ̂[u1] = 2, µ̂[w1] = 3, µ̂[f∗(u1, w1)] = 7, µ̂[u2] = 3, µ̂[w2] = −4, µ̂[f∗(u2, w2)] = 5.

Bottom: example of instantiation of Sign and Commutativity if we consider also f∗(u1,−w1) and f∗(w2, u2)

67



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

Remark 2. The above narration describes a very “eager” refinement strat-

egy, in which all possible refinement constraints for all possible spurious

multiplication terms are generated. Notice, however, that in order to rule

out µ̂ it is sufficient to produce one single refinement constraint for one

single spurious multiplication term. Thus, a great variety of more “lazy”

strategies can be adopted, in which only some of the schemata are instan-

tiated, and only for some of the multiplication terms. For example, rather

than refining all spurious terms, it might be a good idea to refine only

terms occurring in atomic subformulae whose truth-value assignment in µ̂

actually contributed to satisfy ϕ̂. (E.g., atoms occurring only positively in

ϕ̂ which are true in µ̂, see e.g., [BSST09].)

Also, the instantiation of each constraint schema can be implemented

at different levels of granularity, because some constraint schema may cor-

respond to the conjunction of more than one clause (e.g., three clauses

in the case of each Zero constraint schema 1) so that one may decide to

instantiate all, some or only one of the clauses that are actually violated

by µ̂.

Notice that, even more eager refinement strategies are possible, e.g., by

instantiating the Sign and Commutativity constraint schemata ∀x, y.ψ also

when only one multiplication term f∗(t1, s1) in ST µ̂∗ matches one of the two

multiplication terms in ∀x, y.ψ, adding a new multiplication term.

We will discuss the strategies which we have actually chosen and imple-

mented in §7.1.

6.2.2 Refinement for NT A

We consider now the problem of eliminating spurious assignments

to transcendental functions. The pseudo-code for block-spurious-

transcendental-terms is shown in Fig. 6.6. We iterate on all the

1A formula in the form (A ∨B)↔ C can be rewritten as (A ∨B ∨ ¬C) ∧ (¬A ∨ C) ∧ (¬B ∨ C).

68



6.2. ABSTRACTION REFINEMENT

constraint-set block-spurious-transcendental-terms (ϕ̂, µ̂, ε):

1. Γ := ∅
2. for all ftf(x) ∈ ϕ̂:

3. 〈Pl(x), Pu(x)〉 := get-polynomial-bounds (ftf(x), µ̂, ε)

4. if µ̂[ftf(x)] 6∈ [Pl(µ̂[x]), Pu(µ̂[x])]:

5. Γ := Γ ∪ block-spurious-nta-term(ftf(x), µ̂, Pl(x), Pu(x))

6. return Γ

Figure 6.6: Refinement of transcendental functions

(abstract) transcendental function applications ftf(x) in ϕ̂, in order to

check whether the SMT(UFLRA)-model µ̂ is consistent with the NT A
semantics. In principle, this amounts to checking if µ̂[ftf(x)] = tf(µ̂[x]).

In practice, the check cannot be implemented, since transcendental func-

tions at rational points most often have irrational values (see e.g., [Niv61]),

which cannot be represented in SMT(UFLRA).

Therefore, for each term tf(x) in ϕ, we instead compute two rational

values, namely ql and qu, with the property that ql ≤ tf(µ̂[x]) ≤ qu.

The computation of ql and qu is based on polynomials computed using

Taylor series, according to the given current precision, by the function

get-polynomial-bounds of Fig. 6.8. This is done by expanding the

Maclaurin series of tf, generating polynomials for the upper and lower

bounds according to Taylor’s theorem (see Chapter 2), until the requested

precision ε is met. The two values ql and qu are simply the results of

evaluating the two computed polynomials Pl(x) and Pu(x) at µ̂[x]. As

an additional requirement that will be explained below, the function also

ensures (lines 7–9) that the concavity of the Taylor polynomials is the same

as that of tf at µ̂[x].

If the value of tf(x) in µ̂ is not included in the interval [ql,qu], the

function block-spurious-nta-term of Fig. 6.9 is used to generate (piece-

wise) linear constraints that remove the point (µ̂[x], µ̂[tf(x)]) (and possibly

69



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

many others) from the graph of ftf, thus refining the abstraction.

The refinement is performed by block-spurious-nta-term of Fig. 6.9

in two steps. First, it attempts to exclude the bad point by invok-

ing block-spurious-nta-basic, which instantiates some basic constraint

schemata describing very general properties of the transcendental function

tf under consideration (lines 1-3). These constraints encode some sim-

ple properties of transcendental functions (such as sign and monotonicity

conditions, or bounds at noteworthy values) via linear relations, and are

described in §6.2.2. If the current abstract model µ̂ violates any of the

basic constraints, block-spurious-nta-term simply returns their corre-

sponding instantiations.

If none of the basic constraints is violated, then two situations are pos-

sible, as illustrated in Fig. 6.7. Let the green line be the graph of some

transcendental function tf. The points p1 = (x1, y1) and p2 = (x2, y2),

say (1.0,1.0) and (2.2, 0.5), represent transcendental terms that are spu-

rious in the current assignment µ̂ —that is, p1 = (µ̂[x1], µ̂[ftf(x1)]) and

p2 = (µ̂[x2], µ̂[ftf(x2)]), for some x1, x2. In order to eliminate them, we

need to discover linear constraints that are guaranteed to safely approxi-

mate tf. Clearly, a major role is played by the position of the spurious

value µ̂[ftf(x)] relative to the correct value tf(µ̂[x]), and by the concavity

of tf around the point µ̂[x]. If the concavity is negative or equal to zero,

and the point lies above the function, then the tangent to the function

would be adequate to block the spurious assignment –and tighten the ap-

proximation of tf. (This is the case for p1.) However, if the concavity is

negative but the point lies below the function, then a tangent would be not

adequate. (This is the case for p2.) For this reason, secants are required,

which are unfortunately not unique.

The main problem, however, is that the coefficients of the tangent or

of a secant to a transcendental function for a rational value are likely to

70



6.2. ABSTRACTION REFINEMENT

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3  3.5  4

p1

p2

tf(x)
Pl(x)
Pu(x)
T(x)

Sl(x), Su(x)

lx ux

Figure 6.7: Piecewise-linear refinement illustration

〈polynomial,polynomial〉 get-polynomial-bounds (ftf(x), µ̂, ε):

1. c := µ̂[x]

2. conctf := get-concavity (tf, c)

3. i := 1

4. while true:

5. 〈Pl(x), Pu(x)〉 := maclaurin-approx (tf, i, x, c)

6. δ := Pu(c)− Pl(c)
7. concl := get-concavity (Pl, c)

8. concu := get-concavity (Pu, c)

9. if concl = concu = conctf and δ ≤ ε:

10. return 〈Pl(x), Pu(x)〉
11. else:

12. i := i+ 1

Figure 6.8: Polynomial bounds computation for transcendental functions

be irrational, which means that the constraints of the tangent/secant line

can not be readily dealt with by an SMT(UFLRA) solver. As shown in

Fig. 6.7, the idea is to rely on polynomials to approximate the transcen-

dental function, making sure that they also agree on the concavity with

the transcendental function. In this way, the polynomial Pu approximat-

ing tf from above, depicted as a dashed blue line, has a tangent that is

71



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

guaranteed to approximate tf from above (see Proposition 2.9 in Chap-

ter 2). Similarly, for the (red dashed) polynomial Pl approximating tf

from below, any piecewise linear combination of secants is guaranteed to

approximate tf from below. The key property of polynomials is that the

coefficients for tangents and secants are guaranteed to be rationals, and

thus amenable to LRA reasoning. These polynomials are computed us-

ing the Maclaurin series of the corresponding transcendental function and

Taylor’s theorem. Notice that, we use the Maclaurin series (i.e., the Taylor

series centered around 0) because we can always compute the exact deriva-

tive of any order at 0 for the transcendental functions we support, namely

the exponential (exp) and the sine (sin) function. In fact, exp(0) = 1,

sin(0) = 0, exp(i)(x) = exp(x) for all i, and | sin(i)(x)| is | cos(x)| if i is odd

and | sin(x)| otherwise. Thus, the computation of the Maclaurin series and

of the remainder polynomial is exact.

The rest of the primitive block-spurious-nta-term (lines 4-26),

which blocks spurious transcendental terms, is based on the above con-

siderations. If the concavity is positive (resp. negative) or equal to zero,

and the point lies below (resp. above) the function, then the linear approx-

imation is given by a tangent to the lower (resp. upper) bound polynomial

Pl (resp. Pu) at µ̂[x] (lines 7–12 of Fig. 6.9); otherwise, i.e., the concavity

is negative (resp. positive) and the point is below (resp. above) the func-

tion, the linear approximation is given by a pair of secants to the lower

(resp. upper) bound polynomial Pl (resp. Pu) around µ̂[x] (lines 13–25 of

Fig. 6.9).

In the case of tangent refinement, the function get-tangent-bounds

(line 10) returns an interval [l, u] inside which the tangent line is guaran-

teed not to cross the transcendental function tf. In practice, this interval

can be (under)approximated quickly by exploiting known properties of the

specific function tf under consideration. For example, for the exponential

72



6.2. ABSTRACTION REFINEMENT

constraint-set block-spurious-nta-term (tf(x), µ̂, Pl(x), Pu(x)):

# basic refinement

1. Γ := block-spurious-nta-basic (tf(x), µ̂)

2. if Γ 6= ∅:
3. return Γ

# general refinement

4. c := µ̂[x]

5. v := µ̂[ftf(x)]

6. conc := get-concavity (tf(x), c)

7. if (v ≤ Pl(c) and conc ≥ 0) or (v ≥ Pu(c) and conc ≤ 0):

# tangent refinement

8. P := (v ≤ Pl(c)) ? (Pl) : (Pu)

9. T (x) := TanLineP,c(x) # tangent of P at c

10. 〈l, u〉 := get-tangent-bounds (tf(x), c, d
dx
P (c))

11. ψ := (conc < 0) ? (ftf(x) ≤ T (x)) : (ftf(x) ≥ T (x))

12. Γ := {((x ≥ l) ∧ (x ≤ u))→ ψ}
13. else: # (v ≤ Pl(c) ∧ conc < 0) ∨ (v ≥ Pu(c) ∧ conc > 0)

# secant refinement

14. prev := get-previous-secant-points (tf(x))

15. l := max{p ∈ prev | p < c}
16. u := min{p ∈ prev | p > c}
17. P := (v ≤ Pl(c)) ? (Pl) : (Pu)

18. Sl(x) := SecLineP,l,c(x) # secant of P between l and c

19. Su(x) := SecLineP,c,u(x)

20. ψl := (conc < 0) ? (ftf(x) ≥ Sl(x)) : (ftf(x) ≤ Sl(x))

21. ψu := (conc < 0) ? (ftf(x) ≥ Su(x)) : (ftf(x) ≤ Su(x))

22. φl := (x ≥ l) ∧ (x ≤ c)

23. φu := (x ≥ c) ∧ (x ≤ u)

24. store-secant-point (tf(x), c)

25. Γ := {(φl → ψl), (φu → ψu)}
26. return Γ

Figure 6.9: Piecewise-linear refinement for the transcendental function tf(x) at point c

73



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

function get-tangent-bounds always returns [−∞,+∞]; for other func-

tions, the computation can be based, e.g., on an analysis of the (known,

precomputed) inflection points of tf around the point of interest µ̂[x] and

the slope d
dxP (c) of the tangent line.

In the case of secant refinement, a second value, different from µ̂[x],

is required to draw a secant line. The function get-previous-secant-

points returns the set of all the points at which a secant refinement was

performed in the past for tf(x). From this set, we take the two points l

and u closest to µ̂[x], such that l < µ̂[x] < u and that there is no inflection

point in [l, u] 2, and use those points to generate two secant lines and

their validity intervals. Before returning the set of the two corresponding

constraints, we also store the new secant refinement point µ̂[x] by calling

store-secant-point.

Remark 3. Similarly to the case of NRA (see Remark 2), we remark

that also the above description is only one of the possible strategies for

refinement, and that in particular it is possible to adopt lazier variants.

Example 6.2. In order to rule out a spurious interpretation µ̂[x] = 2.0,

µ̂[fexp(x)] = 3.0 (where fexp(x) is the abstraction of the exponential func-

tion) we may exploit the positive concavity of exp(x) and obtain a linear

lower-bound constraint, e.g., fexp(x) > 155
21 + 331

45 ∗ (x − 2). Notice that,

exp(2.0) u 7.389, 155
21 u 7.381 / exp(2.0), and 331

45 u 7.356 / d
dx exp(2.0).

These values are such that the above linear constraint “approximates” the

tangent of exp(x) in x = 2, since it always lower-bounds exp(x) and its

value and derivative are very near to those of exp(x) for x = 2.0. 4

In the following, we discuss our approach for generating refinement con-

straints for the transcendental functions exp and sin. Other transcendental
2For simplicity, we assume that this is always possible. If needed, this can be implemented, e.g., by

generating the two points at random while ensuring that l < µ̂[x] < u and that there is no inflection

point in [l, u].

74



6.2. ABSTRACTION REFINEMENT

Lower Bound: ∀y.(fexp(y) > 0)

Zero: ∀y.(y = 0↔ fexp(y) = 1)

∀y.(y < 0↔ fexp(y) < 1)

∀y.(y > 0↔ fexp(y) > 1)

Zero Tangent Line: ∀y.(y 6= 0↔ fexp(y) > y + 1)

Monotonicity: ∀y1, y2.(y1 < y2 ↔ fexp(y1) < fexp(y2))

Figure 6.10: Basic constraint schemata for the exponential function

functions such as log, cos, tan, arcsin, arccos, arctan can be handled by

means of rewriting. For example, cos(x) is rewritten to sin(x+ π
2 ), whereas

if ϕ contains log(x), we rewrite it as ϕ{log(x) 7→ lx} ∧ exp(lx) = x, where

lx is a fresh variable.

The Exponential Function

Basic Linear Constraints. Our implementation of block-spurious-nta-

basic for exp uses the linear constraint schemata in Fig. 6.10. For each

exponential function exp(x) violating its rational bounds, we instantiate

the basic constraint schemata with µ̂[x]; if the result evaluates to false, we

generate the corresponding instantiation by replacing the quantified vari-

able y with x and removing the quantifier. In the case of the monotonic-

ity constraint schema, we check all possible combinations of exponential

function applications exp(x1) and exp(x2) that are violating their rational

bounds.

Polynomial Approximation. Since d
dx exp(x) = exp(x), all the derivatives

of exp are positive. The polynomial Pn,exp,0(x) is given by the Maclaurin

series

Pn,exp,0(x) =
n∑
i=0

xi

i!

75



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

and behaves differently depending on the sign of x. Thus, get-

polynomial-bounds distinguishes three cases for finding the polynomials

Pl(x) and Pu(x):

Case x = 0: since exp(0) = 1, we have Pl(0) = Pu(0) = 1;

Case x < 0: we have that Pn,exp,0(x) < exp(x) if n is odd, and Pn,exp,0(x) >

exp(x) if n is even; we therefore set Pl(x) = Pn,exp,0(x) and Pu(x) =

Pn+1,exp,0(x) for a suitable n so that the required precision ε is met;

Case x > 0: we have that Pn,exp,0(x) < exp(x) and Pn,exp,0(x) ∗ (1 −
xn+1

(n+1)!)
−1 > exp(x) when (1 − xn+1

(n+1)!) > 0, therefore we set Pl(x) =

Pn,exp,0(x) and Pu(x) = Pn,exp,0(x) ∗ (1− xn+1

(n+1)!)
−1 for a suitable n. 3

Since the concavity of exp is always positive, the tangent refinement will

always give lower bounds for exp(x), and the secant refinement will give

upper bounds. Moreover, as exp has no inflection points, get-tangent-

bounds always returns [−∞,+∞].

The Sine Function

Dealing with Periodicity: Base Period Shifting. The correctness of our re-

finement procedure relies crucially on being able to compute the concavity

of the transcendental function tf at a given point c. This is needed in or-

der to know whether a computed tangent or secant line constitutes a valid

upper or lower bound for tf around c (see Fig. 6.7 and 6.9). In the case of

the sin function, computing the concavity at an arbitrary point c is prob-

lematic, since this essentially amounts to computing the value c′ ∈ [−π, π[

s.t. c = 2πn + c′ for some integer n, because in [−π, π[ the concavity of

sin(c′) is the opposite of the sign of c′. This is not easy to compute because

π is a transcendental number.
3We slightly abuse the notation: Pu(x) is not a polynomial but a rational function.

76



6.2. ABSTRACTION REFINEMENT

In order to solve this problem, we exploit another property of sin, namely

its periodicity (with period 2π). More precisely, we split the reasoning

about sin depending on two kinds of periods: base period, with argument

from −π to π, and extended period. For each sin(x) term we introduce

an “artificial” sin term sin(ωx), where ωx is a fresh variable called base

variable. Base variables are constrained to be interpreted over the base

period, where the sin value for the corresponding variable in the extended

period is computed. This is done by adding the following constraint during

formula preprocessing:

ϕshift =̇
∧

sin(x)∈ϕ

(
−π ≤ ωx < π ∧ sin(x) = sin(ωx)) ∧
((−π ≤ x < π)→ x = ωx)

)
(6.1)

The first conjunct constrains ωx to the base period. The second conjunct

constrains sin(x) to have the same value as sin(ωx). The third conjunct

states that if x is interpreted in the base period then it has the same value

as its base variable. In order to reason about the irrational π, we introduce

a variable π̂, and add the constraint lπ < π̂ < uπ to ϕ. lπ and uπ are

valid rational lower and upper bounds for the actual value of π that can be

computed with various methods. Using this transformation, we can easily

compute the concavity of sin at µ̂[ωx] by just looking at the sign of µ̂[ωx],

provided that −lπ ≤ µ̂[ωx] ≤ lπ, where lπ is the current lower bound for

π̂. (We recall that in the interval [−π, π[, the concavity of sin(c) is the

opposite of the sign of c.)

Let Fbsin be the set of fsin(ωx) terms in ϕ̂ that have base variables as

arguments, Fsin be the set of all fsin(x) terms, and Fesin =̇ Fsin \Fbsin, where

fsin is the uninterpreted function that represents sin in ϕ̂. Both the basic

linear refinement and the tangent/secant refinement is performed for the

terms in Fbsin only; we then use linear shift constraints (described below)

for refining terms in Fesin, as follows.

For each fsin(x) ∈ Fesin with the corresponding base variable ωx, we

77



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

check whether the value µ̂[x] after shifting to the base period is equal to

the value of µ̂[ωx]. We calculate the integer shift value s of x as the rounding

towards zero of (µ̂[x] + µ̂[π̂])/(2 ∗ µ̂[π̂]), and we then compare µ̂[ωx] with

µ̂[x] − 2 ∗ s ∗ µ̂[π̂]. If the values are different, we add the following linear

shift constraint for relating x with ωx in the extended period s:(
−π̂ ≤ ωx < π̂ ∧ fsin(x) = fsin(ωx) ∧
π̂ ∗ (2 ∗ s− 1) ≤ x < π̂ ∗ (2 ∗ s+ 1))

)
→ ωx = x− 2 ∗ s ∗ π̂.

In this way, we do not need the tangent and secant refinement for the ex-

tended period and we can reuse the refinements done in the base period.

Notice that, even if the calculated shift value is wrong (due to the impre-

cision of µ̂[π̂] with respect to the real value π), the constraint we generate

may be useless, but it is never wrong.

Basic Linear Constraints. We use the constraint schemata of Fig. 6.11

for implementing block-spurious-nta-basic for sin. As written above,

these constraints are only checked for terms in Fbsin.

Polynomial Approximation. For each term fsin(ωx) that needs to be re-

fined, we first check whether µ̂[ωx] ∈ [−lπ, lπ], where lπ is the current lower

bound for π̂. If this is the case, then we derive the concavity of sin at µ̂[ωx]

by just looking at the sign of µ̂[ωx]. We can therefore perform tangent or

secant refinement as shown in Fig. 6.9. More precisely, get-polynomial-

bounds finds the lower and upper polynomials using Taylor’s theorem,

which ensures that:

Pn,sin,0(ωx)−Ru
n+1,sin,0(ωx) ≤ sin(ωx) ≤ Pn,sin,0(ωx) +Ru

n+1,sin,0(ωx)

78



6.2. ABSTRACTION REFINEMENT

Symmetry: ∀ωx.(fsin(ωx) = −fsin(−ωx))
Phase: ∀ωx.(−π̂ ≤ ωx < π̂ → (0 < ωx ↔ fsin(ωx) > 0))

∀ωx.(−π̂ ≤ ωx < π̂ → (−π̂ < ωx < 0↔ fsin(ωx) < 0))

Zero Tangent: ∀ωx.(−π̂ ≤ ωx < π̂ → (ωx > 0↔ fsin(ωx) < ωx))

∀ωx.(−π̂ ≤ ωx < π̂ → (ωx < 0↔ fsin(ωx) > ωx))

π Tangent: ∀ωx.(−π̂ ≤ ωx < π̂ → (fsin(ωx) < −ωx + π̂))

∀ωx.(−π̂ ≤ ωx < π̂ → (ωx > −π̂ ↔ fsin(ωx) > −ωx − π̂))

Significant Values: ∀ωx.(−π̂ ≤ ωx < π̂ → (fsin(ωx) = 0↔ (ωx = 0 ∨ ωx = −π̂)))

∀ωx.(−π̂ ≤ ωx < π̂ → (fsin(ωx) = 1↔ ωx =
π̂

2
))

∀ωx.(−π̂ ≤ ωx < π̂ → (fsin(ωx) = −1↔ ωx = − π̂
2

))

∀ωx.(−π̂ ≤ ωx < π̂ → (fsin(ωx) =
1

2
↔ (ωx =

π̂

6
∨ ωx =

5 ∗ π̂
6

)))

∀ωx.(−π̂ ≤ ωx < π̂ → (fsin(ωx) = −1

2
↔ (ωx = − π̂

6
∨ ωx = −5 ∗ π̂

6
)))

Monotonicity: ∀ωx1 , ωx2 .(−π̂ ≤ ωx1 < ωx2 ≤ −
π̂

2
→ fsin(ωx1) > fsin(ωx2))

∀ωx1 , ωx2 .(−
π̂

2
≤ ωx1 < ωx2 ≤

π̂

2
→ fsin(ωx1) < fsin(ωx2))

∀ωx1 , ωx2 .(
π̂

2
≤ ωx1 < ωx2 < π̂ → fsin(ωx1) > fsin(ωx2))

Figure 6.11: Basic constraint schemata for sin function

where

Pn,sin,0(ωx) =
n∑
k=0

(−1)k ∗ ω2k+1
x

(2k + 1)!

Ru
n+1,sin,0(ωx) =

ω
2(n+1)
x

(2(n+ 1))!

We set Pl(x) = Pn,sin,0(x) − Ru
n+1,sin,0(x) and Pu(x) = Pn,sin,0(x) +

Ru
n+1,sin,0(x). Under the above hypothesis that µ̂[ωx] ∈ [−lπ, lπ], also the

function get-tangent-bounds can easily be implemented by looking at

the sign of µ̂[ωx]: if µ̂[ωx] ≥ 0, then the validity interval is [0, π̂[, otherwise,

it is [−π̂, 0].

79



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

The remaining case to discuss is when the value of ωx in µ̂ is not within

the interval [−lπ, lπ] (which means that |µ̂[ωx]| ∈ (lπ, uπ]). In this case,

we cannot reliably compute the concavity of sin at µ̂[ωx]. Therefore, in-

stead of performing a tangent/secant refinement, we refine the precision

of π̂ by computing a tighter interval (l′π, u
′
π) for it, using Machin’s formula

[BBB13]. 4 For a positive integer n:

π > 4 ∗
2n+1∑
k=0

(
(−1)k

2k + 1
∗
(

4

52k+1
− 1

2392k+1

))

π < 4 ∗
2(n+1)∑
k=0

(
(−1)k

2k + 1
∗
(

4

52k+1
− 1

2392k+1

))

6.3 Spuriousness Check and Detecting Satisfiability

We concentrate now on the problem of checking the spuriousness of the

abstract model µ̂ and of detecting the existence of solutions for satisfiable

formulae. We deal with NRA first in §6.3.1, and then consider NT A in

§6.3.2.

6.3.1 Finding Rational Models for NRA

We first describe the behavior of the function check-model restricted to

NRA, which we represent by the function check-NRA-model. Notice

that the parameter ε has no role for NRA, so that check-NRA-model

receives as input only ϕ̂ and µ̂.

In its simplest form, the function check-NRA-model could simply be

implemented by checking if µ̂[x]∗ µ̂[y] = µ̂[f∗(x, y)] for every multiplication

term f∗(x, y) ∈ ϕ̂, returning true if and only if this is the case. It is easy

to see, however, that this very simple algorithm can return true only if the

4This is not explicitly shown in the pseudocode of Fig. 6.9, but it is part of block-spurious-nta-

basic.

80



6.3. SPURIOUSNESS CHECK AND DETECTING SATISFIABILITY

〈bool, model〉 check-NRA-model (ϕ̂, µ̂):

1. ψ̂ := get-assignment(ϕ̂, µ̂) # truth assignment induced by µ̂ (6.2)

2. ψ̂∗ := ψ̂ ∧ linearization-axioms(ψ̂) # add multiplication-line constraints (6.3)

3. return SMT-UFLRA-check (ψ̂∗)

Figure 6.12: An incomplete procedure using an SMT(UFLRA) solver

UFLRA solver “guesses” a model that is consistent with all the nonlinear

multiplications. In an infinite and dense domain like the rationals or the

reals, the chances that this will happen are very low in general.

Thus, in practice it is not enough for check-NRA-model to check

the spuriousness of µ̂. In order to detect satisfiable cases more effec-

tively in the very-likely case in which µ̂ is spurious, we also want that

check-NRA-model searches for the existence of an actual model for ϕ

“in the surroundings” of µ̂. Our idea is to extract the truth assignment ψ̂

induced by µ̂ on the atoms of ϕ̂:

ψ̂ =̇
∧

[Â ∈ atoms(ϕ̂) s.t.µ̂|=Â]

Â ∧
∧

[Â ∈ atoms(ϕ̂) s.t.µ̂6|=Â]

¬Â, (6.2)

and then to look for another model η̂ for ψ̂. Notice that, any such model

η̂ shares with µ̂ the truth assignment on the atoms ψ̂, but with different

values of the real variables.

The algorithm we propose is outlined in Fig. 6.12, where we extract the

truth assignment ψ̂ induced by the UFLRA model µ̂ on the atoms of ϕ̂,

and we conjoin to it the multiplication-line constraints:

ψ̂∗ = ψ̂ ∧
∧

f∗(x,y)∈ψ̂

(
( x = µ̂[x] ∧ f∗(x, y) = µ̂[x] ∗ y ) ∨
( y = µ̂[y] ∧ f∗(x, y) = µ̂[y] ∗ x )

)
. (6.3)

The main idea is to build an UFLRA under-approximation ψ̂∗ of the NRA

formula ψ, in which all multiplications are forced to be linear. Notice that,

81



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

this corresponds to searching for a solution along the multiplication lines

described in §6.2.1, Fig. 6.3c and Fig. 6.3d.

Example 6.3. Consider the following formula ϕ:

ϕ =̇ x ∗ y = 10 ∧ (2 ≤ x ≤ 4) ∧ (2 ≤ y ≤ 4).

Then, ϕ̂ =̇ f∗(x, y) = 10∧(2 ≤ x ≤ 4)∧(2 ≤ y ≤ 4). Suppose the following

model µ̂ is returned by SMT-UFLRA-check (line 6 in Fig. 6.1.2):

µ̂[x] = 2, µ̂[y] = 4, µ̂[f∗(x, y)] = 10.

µ̂ is a spurious interpretation since 2 ∗ 4 6= 10 in NRA. However,

using check-NRA-model we can still find an NRA-compliant model

from the “guesses”, which solves the following UFLRA-satisfiable formula

(see (6.3)):

ψ̂ =̇ f∗(x, y) = 10 ∧ (2 ≤ x ≤ 4) ∧ (2 ≤ y ≤ 4)∧

((x = 2 ∧ f∗(x, y) = 2 ∗ y) ∨ (y = 4 ∧ f∗(x, y) = 4 ∗ x)).

A possible UFLRA-model µ̂∗ for ϕ̂ is:

µ̂∗[x] =
5

2
, µ̂∗[y] = 4, µ̂∗[f∗(x, y)] = 10,

that is also compliant with NRA. 4

Given the simplicity of the Boolean structure of the under-approximated

formula, the check should in general be very cheap. In substance, we

trade the complexity of NRA-solving with some extra Boolean reasoning.

The drawback is that this is (clearly) still an incomplete procedure (see

Example 6.4). However, in our experiments (for which we refer to §7.2)

we have found it to be surprisingly effective for many problems.

Example 6.4. Consider the following NRA-satisfiable formula:

ϕ =̇ x ∗ x = 2.

82



6.3. SPURIOUSNESS CHECK AND DETECTING SATISFIABILITY

bool check-model (ϕ̂, µ̂, ε):

1. 〈sat, µ̂∗〉 := check-NRA-model (ϕ̂, µ̂)

2. if sat:

3. let ϕsat
µ̂∗ be the formula as defined in (6.5)

4. return not SMT-LRA-check (¬ϕsat
µ̂∗ )

5. else:

6. return false

Figure 6.13: Detecting satisfiability using an SMT(LRA) solver

check-NRA-model would never find a model that is compliant

with NRA, because it is driven by the “guesses” returned by

SMT-UFLRA-check which only produces rational number guesses

(line 6 in Fig. 6.1.2) and ϕ has models with irrational numbers only. More-

over, for the same reason the procedure SMT-NTA-check would never

terminate and will keep performing the refinement. 4

6.3.2 Detecting Satisfiability with NT A

We describe now how to extend the check-model procedure to deal with

transcendental functions. The pseudo-code for check-model is shown in

Fig. 6.13. As already written earlier, since our UFLRA solver is not able

to deal with irrational numbers, in general we are not able to precisely

represent a model µ for a formula with transcendental functions, since in

most cases the model value for a term tf(x) is irrational if the value for x

is rational. 5

In general, therefore, we are not able to construct a model for a for-

mula with transcendental functions. However, we may exploit this simple

observation: we can still conclude that ϕ is satisfiable if we are able to

show that ϕ̂ is satisfiable under all possible interpretations of ftf that are

5With the notable exception of 0, at which both exp and sin have rational values.

83



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

guaranteed to include also tf. In order to do this, we proceed as follows.

Starting from the abstract model µ̂ for ϕ̂, we first try to obtain a

model µ̂∗ that is consistent with multiplication terms, using the proce-

dure check-NRA-model described in §6.3.1, while still treating all the

transcendental functions as uninterpreted. Then, we compute safe lower

and upper bounds tf(µ̂∗[x])
l

and tf(µ̂∗[x])
u

for the function tf at point

µ̂∗[x] with the get-polynomial-bounds function (see §6.2.2), with the

current value of ε.

Let ψ be the formula obtained by substituting every f∗(x, y) ∈ ϕ̂ by x∗y
and every variable x ∈ ϕ̂ by µ̂∗[x] with the exception of π̂. 6 We notice

that, the satisfiability of the original formula ϕ follows from the validity of

the following formula:

ρ =̇

lπ < π̂ < uπ ∧
∧

ftf(x)∈ϕ̂

tf(µ̂∗[x])
l
≤ ftf(µ̂∗[x]) ≤ tf(µ̂∗[x])

u

→ ψ,

(6.4)

that is, from the fact that ψ holds for all possible interpretations of π̂ and

the uninterpreted functions ftf which fit in the bounds in the given points.

In fact, since by construction lπ < π < uπ ∧ tf(µ̂∗[x])
l
≤ tf(µ̂∗[x]) ≤

tf(µ̂∗[x])
u
, then the validity of the above formula implies that the formula

is satisfied also by all interpretations which assign to π̂ the value of π and

all ftf(µ̂∗[x]) the values of tf(µ̂∗[x]), which by construction satisfy the

original formula ϕ.

In order to be able to use a quantifier-free SMT(LRA)-solver, we reduce

the problem to the validity check of an LRA formula. Let CT be the set

of all terms ftf(µ̂∗[x]) occurring in ψ. We replace each occurrence of

ftf(µ̂∗[x]) in CT with a corresponding fresh variable yftf(µ̂∗[x]) from a set

6Notice that, we are treating π as a zero-argument transcendental function.

84



6.3. SPURIOUSNESS CHECK AND DETECTING SATISFIABILITY

Y . We then check the validity of the formula:

ϕsat
µ̂∗ =̇ ∀π̂, Y.(ρ{CT 7→ Y }). (6.5)

If ¬ϕsat
µ̂∗ is unsatisfiable, we conclude that ϕ is NT A-satisfiable. Clearly,

this can be checked with a quantifier-free SMT(LRA)-solver, since ¬∀x.φ
is equivalent to ∃x.¬φ, and x can then be removed by Skolemization.

Example 6.5. Consider the following NT A-satisfiable formula:

ϕ =̇ exp(x) > 0,

and its initial abstraction:

ϕ̂ =̇ fexp(x) > 0.

We demonstrate an execution of check-model (Fig. 6.13). Let µ̂∗ be a

model returned by check-NRA-model (line 1 in Fig. 6.13), where:

µ̂∗[x] = 1, µ̂∗[fexp(x)] = 1.

Using bounds computed with get-polynomial-bounds (Fig. 6.8), (6.4)

and (6.5) become:

ρ =̇

(
(
333

106
< π̂ <

355

113
) ∧ (

65

24
≤ fexp(1) ≤ 325

119
)

)
→ fexp(1) > 0

ϕsat
µ̂∗ =̇ ∀π̂, y.

((
333

106
< π̂ <

355

113
) ∧ (

65

24
≤ y ≤ 325

119
)

)
→ y > 0

)
¬ϕsat

µ̂∗ =̇ (
333

106
< π̂ <

355

113
) ∧ (

65

24
≤ y ≤ 325

119
) ∧ y ≤ 0

Note that ¬ϕsat
µ̂∗ clearly LRA-unsatisfiable because of the constraints on y

and that can be shown by using any complete SMT(LRA) solver. There-

fore, check-model returns true. 4

85



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

6.4 Proofs of Correctness

We prove the correctness of the SMT-NTA-check procedure (Fig. 6.1),

by first proving that the procedure maintains an over-approximation of the

input problem ϕ. This is done by showing that the SMT-preprocess

function (Line 1) is NT A-satisfiability preserving – Lemma 6.6; and that

the over-approximation is maintained in the loop (Line 5-12) – Lemma 6.7.

In what follows ϕ′ is the result of SMT-preprocess(ϕ), so that

ϕ′ =̇ ϕ ∧ ϕshift (see (6.1) in §6.2.2).

Lemma 6.6. ϕ is NT A-satisfiable if and only if ϕ′ is NT A-satisfiable.

Proof. The “if” case is obvious. For the “only if” case, let µ be an

NT A-interpretation satisfying ϕ. Then we can build another NT A-

interpretation µ′ by extending µ to the new symbols ωx ∈ ϕshift introduced

during preprocessing as follows. For each ωx ∈ ϕ′, if µ[x] ∈ [−π, π[ then

µ′[ωx] =̇ µ[x]; otherwise, we can choose µ′[ωx] =̇ c such that µ[sin(c)] =

µ[sin(x)], where c ∈ R and c ∈ [−π, π[. We can always choose such c

because sin is periodic, and [−π, π] defines a period for it. Then by con-

struction µ′ |= ϕshift, so that the statement holds.

Let ϕ̂ be the result of SMT-initial-abstraction(ϕ′). Consider a

generic loop in SMT-NTA-check(ϕ) and the value Γ at the end of such

loop. By construction all constraints in Γ are either instances of those in

Fig. 6.4, Fig. 6.10, Fig. 6.11, or tangent/secant constraints from Fig. 6.9,

or linear shift constraints as discussed in §6.2.2.

Lemma 6.7. If ϕ is NT A-satisfiable, then ϕ̂∧
∧

Γ is UFLRA-satisfiable.

Proof. Let µ be an NT A-interpretation satisfying ϕ. By Lemma 6.6, we

have an NT A-interpretation µ′ that satisfies ϕ′. We build an UFLRA-

interpretation µ̂ satisfying ϕ̂ ∧
∧

Γ as follows:

86



6.4. PROOFS OF CORRECTNESS

• for each x ∈ ϕ′, µ̂[x] =̇ µ′[x]

• for each ωx ∈ ϕ′, µ̂[ωx] =̇ µ′[ωx]

• for π̂, µ̂[π̂] =̇ µ′[π]

• for each f∗(x, y) ∈ ϕ̂, µ̂[f∗(x, y)] =̇ µ′[x ∗ y]

• for each ftf(x) ∈ ϕ̂, µ̂[ftf(x)] =̇ µ′[tf(x)]

µ̂ clearly satisfies ϕ̂ and all the constraints (constraints in Fig. 6.4, Fig. 6.10,

Fig. 6.11; tangent/secant constraints from Fig. 6.9 and the linear shift

constraints as discussed in §6.2.2) in Γ, because they are valid in any theory

which interprets f∗(), ftf() and π̂ as ∗, tf() and π respectively. Hence

the statement holds.

We now prove the correctness of the method to detect satisfiability. Let

ϕ, ϕ′ be as above and let ϕ̂, µ̂, sat, µ̂∗, and ϕsat
µ̂∗ be as in check-model

(Fig. 6.13), so that µ̂ is an UFLRA-model for ϕ̂. ϕsat
µ̂∗ (6.5) is the formula

for detecting the NT A-satisfiability of ϕ as discussed in §6.3.2. (We recall

that ϕsat
µ̂∗ is a closed LRA formula.)

Lemma 6.8. If check-model(ϕ, µ̂, ε) returns true, then ϕ is NT A-

satisfiable.

Proof. From Fig. 6.13, check-model(ϕ, µ̂, ε) returns true if and only if

check-NRA-model returns 〈True, µ̂∗〉 and ¬ϕsat
µ̂∗ is LRA-unsatisfiable –

that is, ϕsat
µ̂∗ is LRA-valid. From Fig. 6.12, if check-NRA-model returns

〈True, µ̂∗〉, then µ̂∗ is an UFLRA-model of a conjunction of literals ψ̂∗

(6.3) which tautologically entails ϕ̂ and it is s.t. each f∗(x, y) equals x ∗ y
in µ̂∗. Thus µ̂ |= ϕ̂ and µ̂[f∗(x, y)] = µ̂[x] ∗ µ̂[y] for each term f∗(x, y) ∈ ϕ̂.

Then we can construct an NT A-interpretation µ for ϕ′ as follows:

• for every x, ωx ∈ ϕ′, µ[x] =̇ µ̂∗[x] and µ[ωx] =̇ µ̂∗[ωx]

87



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

• for π̂, µ[π̂] =̇ π

• for every tf(x) ∈ ϕ : µ[tf(x)] =̇ tf(µ̂∗[x])

We show that µ is a model for ϕ′. The validity of ϕsat
µ̂∗ , and hence of

(6.4), implies that ϕ′ is satisfied by every interpretation extending µ̂∗ which

assigns to each uninterpreted term ftf(µ̂∗[x]) a value within the bounds

[tf(µ̂∗[x])
l
,tf(µ̂∗[x])

u
] and assigns π̂ a value in ]lπ, uπ[. µ is one of such

interpretations because µ[π̂] =̇ π and µ[ftf(µ̂∗[x])] =̇ tf(µ̂∗[x]) which is in

[tf(µ̂∗[x])
l
,tf(µ̂∗[x])

u
] by Taylor’s Theorem ((2) in Chapter 2). Thus µ is

an NT A-model for ϕ′, and hence for ϕ. Therefore ϕ is NT A-satisfiable.

Theorem 6.9. SMT-NTA-check is sound, i.e., when it returns 〈true, ∅〉
then ϕ is NT A-satisfiable and when it returns 〈false,Γ〉 then ϕ is not

NT A-satisfiable.

Proof. SMT-NTA-check returns 〈false,Γ〉 only when

SMT-UFLRA-check returns false. In this case, by Lemma 6.6

and Lemma 6.7, ϕ is not NT A-satisfiable.

SMT-NTA-check returns 〈true, ∅〉 only when check-model in-

side check-refine returns true. In this case ϕ is NT A-satisfiable by

Lemma 6.8.

6.5 Modifications for SMT(NIA)

Now we focus on solving the SMT(NIA) problem. The procedures pre-

sented earlier require little modifications to make them also work for the

SMT(NIA) case. Interestingly, if we replace SMT-UFLRA-check in

line 6 of Fig. 6.1 and line 3 of Fig. 6.12 with SMT-UFLIA-check, then

we obtain a procedure for solving SMT(NIA). The resultant procedure

is shown in Fig. 6.14. We have highlighted the modified code with the red

88



6.5. MODIFICATIONS FOR SMT(NIA)

〈bool, constraint-set〉 SMT-NIA-check (ϕ):

1. ϕ′ := SMT-preprocess(ϕ)

2. ϕ̂ := SMT-initial-abstraction(ϕ′)

3. Γ := ∅
4. while true:

5. 〈sat, µ̂〉 := SMT-UFLIA-check (ϕ̂ ∧
∧

Γ)

6. if not sat:

7. return 〈false, Γ〉
8. 〈sat,Γ′〉 := check-refine (ϕ′, ϕ̂, µ̂)

9. if sat:

10. return 〈true, ∅〉
11. Γ := Γ ∪ Γ′

〈bool, constraint-set〉 check-refine (ϕ, ϕ̂, µ̂):

12. if check-model (ϕ, µ̂):

13. return 〈true, ∅〉
14. Γ := block-spurious-product-terms(ϕ̂, µ̂) # refinement of products

15. return 〈false,Γ〉

bool check-model (ϕ̂, µ̂):

16. 〈sat, µ̂∗〉 := get-NIA-model (ϕ̂, µ̂)

17. if sat:

18. return true

19. else:

20. return false

〈bool, model〉 get-NIA-model (ϕ̂, µ̂):

21. ψ̂ := get-assignment(ϕ̂, µ̂) # truth assignment induced by µ̂ (6.2)

22. ψ̂∗ := ψ̂ ∧ linearization-axioms(ψ̂) # add multiplication-line constraints (6.3)

23. return SMT-UFLIA-check (ψ̂∗)

Figure 6.14: SMT(NIA) modifications – abstraction to SMT(UFLIA) and refinement

color and removed the code related to transcendental functions since they

do not have part of NIA.

Here are some key observations on the SMT(NIA) procedure:

89



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

• µ̂ assigns integer values to the variables in the NIA-formula ϕ̂;

• the constraints returned by block-spurious-product-terms re-

fine multiplications between integer variables;

• check-model returns true when it finds an NIA-compliant model

using the technique described in §6.3.1;

• check-model does not have to deal with irrational numbers as it

was the case for NRA (see Example 6.4);

• the correctness can be proved in the similar way we did for NRA
(§6.4).

Remark 4. A procedure for the combined theory of NT A and NIA
can also be obtained by using a SMT-UFLIRA-check instead of

SMT-UFLRA-check in line 6 of Fig. 6.1 and line 3 of Fig. 6.12.

6.6 Related Work

Here we compare incremental linearization with the other approaches dis-

cussed in §3.3. We also relate to the works that use similar ideas as ours.

NRA, NT A, and NIA– Common Approaches

Interval Constraint Propagation

There are a few key insights that differentiate our approach from the inter-

val constraint propagation approaches implemented in iSAT3 [FHT+07],

dReal [GKC13], and raSAT [TKO16]. First, our approach is based on

linearization, it relies on solvers for LA and UF , and it proceeds by in-

crementally axiomatizing the multiplication and transcendental functions.

Compared to interval propagation, we avoid numerical approximations

90



6.6. RELATED WORK

(even if within the bounds from DeltaSat). In a sense, the precision

of the approximation is selectively detected at run time, while in iSAT3

and dReal this is a user defined threshold that is uniformly adopted in

the computations. Second, our method relies on piecewise linear approx-

imations, which can provide substantial advantages when approximating

a slope – intuitively, interval propagation ends up computing a piecewise-

constant approximation. Third, a distinguishing feature of our approach

is the ability to (sometimes) prove the existence of a solution even if the

actual values are irrationals, by reduction to an SMT-based validity check.

Linearization

Recent versions of the CVC4 [BCD+11] SMT solver also implement a

variant of the incremental linearization procedure. In comparison to our

work, it does not support SMT(NT A). Moreover, it does not uses the

NRA/NIA model-finding heuristic, as described in §6.3.1. In another

work [NPSS10], the idea of using tangent planes has been explored in the

context of SMT(NRA). A key difference is that the tangent planes are

used to under-approximate predicates, while in our approach they are used

to refine the over-approximation of the multiplication function.

Interestingly, the subtropical satisfiability [FOSV17] implemented in

veriT [BODF09] encodes a sufficient condition for satisfiability into an

LRA problem, which is a similarity to our approach for checking satis-

fiability of NRA constraints. A difference is that our approach (though

incomplete) can be used to detect both satisfiable and unsatisfiable cases.

In the context of SMT(NT A), the work in [Tiw15] approximates the

natural logarithm ln with tangent lines, whereas we approximate not only

a monotonic exp function (ln can be rewritten in terms exp) but we can

also handle periodic trigonometric functions. Moreover, we also exploit

other properties (e.g., monotonicity) to derive additional axioms.

91



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

In the context of SMT(NIA), our approach for finding NIA-models

is similar in spirit to the proposal in [BLO+12]: In a sense that we also

under-approximate the problem by encoding into an SMT(LIA) problem

via linearization. However, the approach in [BLO+12] focuses mainly on

detecting satisfiable cases, whereas we try to handle both satisfiable and

unsatisfiable instances. Another difference is that in [BLO+12] the lin-

earization is done upfront if the problem is bounded; otherwise, it is done

on-the-fly via some heuristics. In contrast, for finding models, we linearize

using the “guesses” provided by the SMT(UFLIA) solver – solving a linear

over-approximation of the original problem to detect unsatisfiability.

NRA-Specific Approaches

z3 [dMB08b], Yices [Dut14], and SMT-RAT [CKJ+15] SMT solvers

are based on quantifier elimination approaches. In contrast to these ap-

proaches, incremental linearization is an incomplete technique and is not

based on quantifier elimination.

CalCS [NPSS10] SMT solver based on convex programming approach

can handle a strict subset (convex constraints) of NRA, whereas our ap-

proach does not have this restriction.

NT A-Specific Approaches

MetiTarski [AP10], which is based on a deductive method, cannot prove

the existence nor compute a satisfying assignment of a solution, while we

are able to (sometimes) prove the existence of a solution even if the actual

values are irrationals. An important point to note is that MetiTarski

may require the user to manually write axioms if the ones automatically

selected from a predefined library are not enough. Our approach is com-

pletely automatic.

92



6.6. RELATED WORK

Similarly to our work, a UFLRA approximation-based approach is pre-

sented in [EKK+11]. The approximation is however done only as a first

check before calling the iSAT3 solver. In contrast, we rely on solvers

for SMT(UFLRA), and we proceed by incrementally axiomatizing tran-

scendental functions instead of calling directly an NT A solver. Another

similarity with our work is the possibility of finding solutions in some cases.

This is done by post-processing an inconclusive iSAT3 answer, trying to

compute a certificate for a (point) solution for the narrow intervals re-

turned by the solver, using an iterative analysis of the formula and of the

computed intervals. Although similar in spirit, our technique for detect-

ing satisfiable instances is completely different, being based on a logical

encoding of the existence of a solution as an SMT(UFLRA) problem.

A similarity between the approaches presented in [dDLM11, MM16,

Mel11, SH13, Mag14] and ours is the use of the Taylor polynomials. How-

ever, one distinguishing feature is that we use them to find lower and

upper linear constraints by computing tangent and secant lines. Moreover,

we do not rely on any floating point arithmetic library, and unlike the men-

tioned approaches, we can also prove the existence of a solution. On the

other hand, some of the above tools employ more sophisticated/specialized

approximations for transcendental functions, which might allow them to

succeed in proving unsatisfiability of formulae for which our technique is

not sufficiently precise.

Finally, since we are in the context of SMT, our approach also has the

benefits of being:

1. fully automatic, unlike some of the above which are meant to be used

within interactive theorem provers;

2. able to deal with formulae with an arbitrary Boolean structure, and

not just conjunctions of inequalities; and

93



CHAPTER 6. SMT VIA INCREMENTAL LINEARIZATION

3. capable of handling combinations of theories (including uninterpreted

functions, bit-vectors, arrays), which are beyond what the above, more

specialized tools, can handle.

NIA-Specific Approaches

In comparison to the bit-blasting approaches which either use a SAT

solver [FGM+07] or SMT(BV) [ZM10], our model finding method uses an

SMT(UFLIA) solver. Moreover, the bit-blasting approaches mainly focus

on finding models and have limited capabilities to detect unsatisfiable cases

unless the input problems are bounded. As pointed out in [BLO+12], they

are not adequate for the satisfiable instances when the only solutions are

the ones with large integer numbers. In contrast, incremental linearization

is capable of handling both satisfiable and unsatisfiable instances – even

for the unbounded problems.

Yices [Dut14] is the state of the art in SMT(NIA) – it solved the

most number of problems in the QF-NIA division of the SMT competi-

tion 2017. As discussed in §3.3, Yices combines CAD (quantifier elimina-

tion method for NRA) with the branch-and-bound method [Jov17]. In a

sense, Yices uses an abstraction-refinement approach, where the abstract

domain is NRA, and the branch-and-bound constraints refine the abstrac-

tion. Our method is also an abstraction-refinement approach, but in con-

trast to Yices we use an SMT(UFLIA) for solving an over-approximation

of the input problem and (incrementally) add linear constraints as refine-

ments. In this way we can leverage on all state-of-the-art techniques for

the integers reasoning implemented in SMT(UFLIA) solvers – methods

include branch-and-bound, cutting planes, etc. (We suggest [Gri12] for

more details).

94



Chapter 7

Implementation and Experimental

Evaluation

The SMT procedures described in the previous chapter have been imple-

mented within the MathSAT SMT solver [CGSS13]. The description

of the procedures leaves some flexibility for different heuristics regarding

refinement strategies and implementation choices. In this chapter, we de-

scribe the most important ones. We remark that these choices do not affect

the soundness of the approach, but they can have an important impact on

performance.

We have extended MathSAT with the procedures for NRA, NIA,

and NT A. The core solver only supports the exp and sin transcendental

functions and nonlinear multiplications. Other functions (such as nonlin-

ear division, square root, log, cos, tan, arcsin, arccos, arctan) are handled

by encoding them in terms of the supported ones. For example, if the input

formula ϕ contains
√
x, it is rewritten as ϕ{

√
x 7→ y}∧(y ≥ 0→ y∗y = x)

where y is a fresh variable. For formulae not involving transcendental func-

tions, MathSAT can produce a model (in which all variables are assigned

a rational value) when the formula is found to be satisfiable. Model genera-

tion is however not supported for transcendental functions. In this case, in

principle it would be possible to produce rational bounds for the transcen-

95



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

dental functions within which a model is guaranteed to exist (see §6.3.2),

but this has not been implemented yet.

7.1 Implementation Details

Normalization

Normalization of T -literals is an essential preprocessing step [Seb07]

for the efficiency of SMT solvers. In this regard, during a call to to

SMT-preprocess, we normalize NRA-literals by using the distributive

property of multiplication on the nonlinear polynomials.

Arbitrary-precision Rationals

We use the GMP arbitrary-precision library to represent rational numbers.

In our (model-driven) approach, we may have to deal with numbers with

very large numerators and/or denominators. It may happen that we get

such rational numbers from the bad model µ̂ for the variables appearing as

arguments of transcendental functions. As a result of the piecewise-linear

refinement (e.g., for the instantiation of the tangent plane constraints),

we may end-up feeding to the SMT(UFLRA) solver numbers that may

have (even exponentially) larger numerators and/or denominators (due to

the fact that get-polynomial-bounds uses power series). This might

significantly slow-down the performance of the solver.

We address this issue along the following dimensions:

1. Continued fractions. We approximate values in µ̂[x] having too

large numerators and/or denominators by using continued frac-

tions [NW88]. The precision of the rational approximation is increased

periodically over the number of iterations. Thus, we delay the use of

96



7.1. IMPLEMENTATION DETAILS

numbers with larger numerator and/or denominator, and eventually

find those numbers if they are really needed.

2. Selective instantiation of tangent plane constraints. While instantiat-

ing tangent plane constraints at the point (a, b) for x ∗ y we observe

that, in order to block a model µ̂ such that µ̂[f∗(x, y)] 6= µ̂[x] ∗ µ̂[y],

it is sufficient to add one of the two equalities of the tangent plane

constraints in Fig. 6.4; instead of instantiating a constraint at (a, b),

we can instantiate it at either (a+ δ, b) or at (a, b+ δ), for any value

of δ. In practice, if a (resp. b) is a rational constant with a very large

numerator or denominator, instead of instantiating one constraint at

(a, b), we instantiate two tangent constraints at (bac, b) and (dae, b).

3. Initial approximation for π. We initialize the algorithm by choosing

the values lπ = 333
106 and uπ = 355

113 since they give a very small difference

( 1
11978) with a limited number of digits.

Heuristics for Refinement

The descriptions of block-spurious-nra-term and get-polynomial-

bounds leave some flexibility in deciding which constraints to add (and

how many of them) at each iteration. It is possible to conceive strategies

with an increasing degree of eagerness, from very lazy (e.g., adding only

a single constraint per iteration) to more aggressive ones. The simple

strategy we currently adopted consists in eagerly adding all the refinement

constraints that are violated by the current abstract solution µ̂, leaving the

investigation of alternative strategies as future work.

Tangent Plane Frontiers for Multiplications

x ∗ y is a hyperbolic paraboloid surface, and a tangent plane to such sur-

face cuts the surface into four regions: in two of them, the tangent plane

97



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

regions with lower

bounds

regions with upper

bounds

regions with upper &

lower bounds

(a) current frontier (b) new point (a, b) (c) tangent plane instan-

tiation at (a, b)

(d) additional instantia-

tions and updated fron-

tier

Figure 7.1: Illustration of the tangent lemma frontier strategy

is above the surface, thus providing an upper bound, whereas in the other

two regions the tangent plane is below the surface (see Fig. 6.3). Each in-

stantiation of the tangent plane constraints, therefore, only provides either

a lower or an upper bound for a given region. Hence, there is a risk that

the refinement procedure may go into an infinite loop, in which at each it-

eration a refined lower bound (respectively, upper bound) for a given point

is added, when instead an upper bound (a lower bound, resp.) would

be appropriate. In order to address the problem, we adopt the following

strategy. For each f∗(x, y) in the input formula, we maintain a frontier

〈[lx, ux], [ly, uy]〉 with the invariant that whenever x ∈ [lx, ux] or y ∈ [ly, uy],

then f∗(x, y) has both an upper and a lower bound in the abstract formula

ϕ̂. Fig. 7.1 shows a graphical illustration of the strategy. Initially, the

frontiers are set to 〈[0, 0], [0, 0]〉, corresponding to the “Zero” constraint of

Fig. 6.4. Whenever a tangent plane constraint for f∗(x, y) is instantiated

at a point (a, b), we also add further instantiations of the constraint and

update the frontier as follows:

case a < lx and b < ly: add tangent planes at (a, uy) and at (ux, b), and

set the frontier to 〈[a, ux], [b, uy]〉;

98



7.2. EXPERIMENTAL SETUP

case a < lx and b > uy: add tangent planes at (a, ly) and at (ux, b), and

set the frontier to 〈[a, ux], [ly, b]〉;

case a > ux and b > uy: add tangent planes at (a, ly) and at (lx, b), and

set the frontier to 〈[lx, a], [ly, b]〉;

case a > ux and b < ly: add tangent planes at (a, uy) and at (lx, b), and

set the frontier to 〈[lx, a], [b, uy]〉.

7.2 Experimental Setup

We now experimentally evaluate the proposed approach for SMT. The

experiments were run on a cluster of identical machines equipped with

2.6GHz Intel Xeon X5650 processors. The memory limit was set to 6

GB. We used 1000 seconds for the SMT experiments. 1 The results of the

various solvers were automatically cross checked, and no discrepancies were

reported.

We present the (most significant) data using tables, survival plots, and

scatters plots. The tables present detailed results: each column represents

a benchmark family, each entry shows the number of sat/unsat results re-

ported, for tools reporting MaybeSat the number is shown in parentheses,

the best performer for each family is highlighted in boldface, and the overall

best is underlined. The survival plots compare the performance of multiple

approaches. The x-axis shows the solving time in log-scale, and the y-axis

shows the number of instances solved within the corresponding time. (No-

tice that we may use different scales on different plots.) The scatters plots

compare pairwise solvers S1 and S2 on individual benchmarks: each point

(t1, t2) in a scatters represents a benchmark problem that was solved in ti

time by solver Si. We adopt a logarithmic scale, and report time out and

1The adopted time out for SMT is very close to the time out adopted in the SMT competition.

99



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

memory out as separate lines. Red dots are for satisfiable instances, and

blue dots for unsatisfiable ones. Green dots indicate unknown instances.

Diagonal lines mark 2x and 10x performance differences. Points on the in-

ner edges indicate timeouts, those on the outer edges indicate other errors

(memory outs or aborts). In the comparison, by VirtualBest we mean

the results of a virtual portfolio solver that performs on each benchmark

as the best of the solvers in the portfolio.

Benchmarks

For the experimental evaluation on SMT we selected the following bench-

marks. For NRA and NIA, we used all the SMT-LIB [BFT16] bench-

marks from the QF-NRA and QF-NIA categories, respectively. The QF-

NRA class contains 11354 benchmarks, among which 4963 are satisfiable,

5296 are unsatisfiable, and 1095 have unknown status. In the QF-NIA
category, there are 23876 benchmarks: 14124 satisfiable, 3130 unsatisfiable,

and 6622 with unknown status. Since SMT(NT A) is not standardized in

SMT-LIB, for NT A we adopted an extended version of SMT-LIB includ-

ing special function symbols for sin, exp and π. We collected and encoded

SMT(NT A) benchmarks from the following sources, for a total of 2512

benchmarks:

• verification queries over transcendental transition systems [MSN+16]

deriving from SMT-based verification engines, including discretization

of Bounded Model Checking of hybrid automata [RPV17, BBJ15];

• all the benchmarks from the MetiTarski distribution [AP10];

• all the SMT(NT A) benchmarks 2 from the dReal distribu-

tion [GKC13];

2dReal is also able to deal with Ordinary Differential Equations.

100



7.2. EXPERIMENTAL SETUP

• all the benchmarks from the iSAT3 distribution [MSN+16].

iSAT3 requires that each variable is constrained to some interval. There-

fore, we used a very large bound 3 (allowed by iSAT3) for each variable in

the NRA benchmarks. However, it also requires the intervals to be small

when there are transcendental functions. In this case we generated scaled-

down versions of the NT A benchmarks, by adding bound constraints

that force all the real variables in the problem to assume values in the

[−300, 300] interval. Since the SMT-LIB format is not accepted by iSAT3

and MetiTarski, we wrote scripts to cross-convert the benchmarks in the

respective formats.

Other Approaches

We compared MathSAT with various SMT solvers. For SMT(NRA),

we considered z3 [dMB08b, JdM12], Yices [Dut14], and SMT-

RAT [CKJ+15], which implement expensive and complete techniques

based on variants of CAD, and iSAT3 and dReal, based on in-

terval constraint propagation. We also considered the recent ver-

sion of CVC4 [BCD+11] that, as discussed in [RTJB17], is an in-

dependent implementation of our incremental linearization approach

as described in [CGI+17a]. For SMT(NT A), we considered iSAT3,

dReal and MetiTarski [AP10], that implements a deductive approach.

MetiTarski has been developed to deal with hard NT A problems with

a few dozens of predicates, and it is not particularly suited for problems

with a complicated Boolean structure.

3[−10000000000000000000000, 10000000000000000000000]

101



C
H

A
P

T
E

R
7.

IM
P

L
E

M
E

N
T

A
T

IO
N

A
N

D
E

X
P

E
R

IM
E

N
T

A
L

E
V

A
L

U
A

T
IO

N

Total Total w/o MetiTarski

(11354) (4348)

MathSAT 3514/5338 400/3045

CVC4 3050/5322 315/3068

z3 4883/5039 492/2428

Yices 4817/5057 449/2480

SMT-RAT 4317/4475 133/1957

dReal 0(5396)/4239 0(516)/2154

iSAT3 2404(2517)/4402 10(667)/2486

VirtualBest 5158/5756 767/3141

M
e
tiT

a
rsk

i

H
e
izm

a
n
n

H
o
n
g

H
y
C

o
m

p

K
issin

g

L
a
sso

R
a
n
k
e
r

S
tu

rm
-M

B
O

S
tu

rm
-M

G
C

U
ltim

a
te

A
u
to

m
ize

r

Z
a
n
k
l

(7006) (69) (20) (2752) (45) (821) (405) (9) (61) (166)

MathSAT 3114/2293 3/1 0/20 17/2267 18/0 299/432 0/285 0/0 32/6 31/34

CVC4 2735/2254 0/2 0/20 9/2253 4/0 298/465 0/285 0/2 4/8 0/33

z3 4391/2611 0/0 0/9 243/2210 33/0 105/115 0/47 2/7 47/13 62/27

Yices 4368/2577 0/11 0/8 219/2182 10/0 120/233 0/2 0/0 40/12 60/32

SMT-RAT 4184/2518 0/0 0/20 98/1632 9/0 0/0 0/285 0/1 2/0 24/19

dReal 0(4880)/2085 0(0)/0 0(0)/20 0(351)/2129 0(17)/1 0(0)/0 0(0)/0 0(0)/0 0(45)/0 0(103)/4

iSAT3 2394(1850)/1916 0(15)/0 0(0)/14 0(393)/2276 1(29)/1 0(121)/27 0(7)/148 0(3)/0 0(27)/2 9(72)/18

VirtualBest 4391/2615 3/12 0/20 299/2303 33/1 310/466 0/285 2/7 48/13 72/34

Table 7.1: Summary of SMT(NRA) experimental results

102



7.3. RESULTS

7.3 Results

Results for SMT(NRA)

The results for SMT(NRA) are reported in Table 7.1.

The MetiTarski benchmark class in SMT-LIB contains proof obliga-

tions deriving from MetiTarski executions. The MetiTarski bench-

marks are about two thirds of the SMT(NRA) benchmarks in SMT-LIB,

and have a very specific structure – they are conjunctions with no Boolean

part, so that the SMT solvers are in fact being activated as T -solvers for

NRA. Given that MathSAT is also able to deal with the original problems

in SMT(NT A), we also report the results of the comparison limited to the

other benchmarks.

Table 7.1 demonstrates several interesting trends. First, on satisfiable

instances, the complete techniques of Yices and z3 have superior per-

formances than MathSAT in the overall case. However, if we exclude

the MetiTarski benchmarks, we obtain comparable performance to com-

plete solvers, and substantial advantage over incomplete solvers. We also

notice that dReal is unable to conclude Sat in any of the benchmarks,

and – regardless of the precision adopted – it claims MaybeSat on 583

unsatisfiable benchmarks.

Incremental linearization shines on unsatisfiable benchmarks. Math-

SAT (and also CVC4, that basically implements the same technique)

demonstrates very good performance. Overall, MathSAT solves 8852

benchmarks (behind z3 with 9922 and Yices 9874), and is the strongest

solver with 3445 solved (followed by CVC4 with 3383) on the benchmarks

without MetiTarski problems. Interestingly, incremental linearization is

highly complementary with respect to the more expensive techniques im-

plemented in z3, Yices and SMT-RAT. MathSAT is able to solve 317

benchmarks that cannot be solved by other solvers (with the exception of

103



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0

 2000

 4000

 6000

 8000

 10000

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NRA) -- SAT+UNSAT Benchmarks

MathSAT
CVC4

Z3
Yices

SMT-RAT
dReal
iSAT3

virtual-best

Figure 7.2: Survival plots for SMT(NRA) benchmarks

CVC4), and it has been able to prove 579 benchmarks that have unknown

status in the SMT-LIB. 4

The scatters plots for all SMT(NRA) benchmarks are reported in

Fig. 7.3; in Fig. 7.5 are reported the results excluding the MetiTarski

benchmarks. The diagrams comparing MathSAT with z3, Yices and

SMT-RAT show that the techniques to detect satisfiable instances are

very complementary. The diagrams comparing MathSAT with iSAT3

and dReal show that the interval-based techniques are not good at de-

tecting satisfiable instances. We also notice that incremental linearization

and interval-based solvers are complementary on unsatisfiable instances.

This suggests that integrating interval propagation within incremental lin-

earization may be sometimes beneficial for efficiency.

4This value refers to the tagging of the SMT-LIB on 2017-06-17.

104



7.3. RESULTS

 0

 1000

 2000

 3000

 4000

 5000

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NRA) -- SAT Benchmarks

MathSAT
CVC4

Z3
Yices

SMT-RAT
iSAT3

virtual-best

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NRA) -- UNSAT Benchmarks

MathSAT
CVC4

Z3
Yices

SMT-RAT
dReal
iSAT3

virtual-best

Figure 7.2: Survival plots for SMT(NRA) benchmarks

105



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

C
V

C
4

MathSAT

MathSAT solves

805 benchmarks

that are not solved

by CVC4, and 325

vice versa.

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Z
3

MathSAT

MathSAT solves

849 benchmarks

that are not solved

by z3, and 1919

vice versa.

Figure 7.3: Scatters plots for SMT(NRA) benchmarks

106



7.3. RESULTS

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Y
ic

e
s

MathSAT

MathSAT solves

817 benchmarks

that are not solved

by Yices, and

1839 vice versa.

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

S
M

T
-R

A
T

MathSAT

MathSAT solves

1567 benchmarks

that are not solved

by SMT-RAT,

and 1516 vice

versa.

Figure 7.3: Scatters plots for SMT(NRA) benchmarks

107



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

d
R

e
a
l

MathSAT

MathSAT solves

4714 benchmarks

that are not solved

by dReal, and

101 vice versa.

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

iS
A

T
3

MathSAT

MathSAT solves

2360 benchmarks

that are not solved

by iSAT3, and 314

vice versa.

Figure 7.3: Scatters plots for SMT(NRA) benchmarks

108



7.3. RESULTS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NRA) -- SAT+UNSAT Benchmarks (no-meti-tarski)

MathSAT
CVC4

Z3
Yices

SMT-RAT
dReal
iSAT3

virtual-best

Figure 7.4: Survival plots for SMT(NRA) benchmarks excluding MetiTarski

109



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NRA) -- SAT Benchmarks (no-meti-tarski)

MathSAT
CVC4

Z3
Yices

SMT-RAT
iSAT3

virtual-best

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NRA) -- UNSAT Benchmarks (no-meti-tarski)

MathSAT
CVC4

Z3
Yices

SMT-RAT
dReal
iSAT3

virtual-best

Figure 7.4: Survival plots for SMT(NRA) benchmarks excluding MetiTarski

110



7.3. RESULTS

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

C
V

C
4

MathSAT

MathSAT solves

127 benchmarks

that are not solved

by CVC4, and 65

vice versa.

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Z
3

MathSAT

MathSAT solves

849 benchmarks

that are not solved

by z3, and 324 vice

versa.

Figure 7.5: Scatters plots for SMT(NRA) benchmarks excluding MetiTarski

111



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Y
ic

e
s

MathSAT

MathSAT solves

798 benchmarks

that are not solved

by Yices, and 282

vice versa.

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

S
M

T
-R

A
T

MathSAT

MathSAT solves

1462 benchmarks

that are solved by

SMT-RAT, and

107 vice versa.

Figure 7.5: Scatters plots for SMT(NRA) benchmarks excluding MetiTarski

112



7.3. RESULTS

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

d
R

e
a
l

MathSAT

MathSAT solves

1308 benchmarks

that are not solved

by dReal, 17 vice

versa.

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

iS
A

T
3

MathSAT

MathSAT solves

986 benchmarks

that are not solved

by iSAT3, and 37

vice versa.

Figure 7.5: Scatters plots for SMT(NRA) benchmarks excluding MetiTarski

113



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

Results for SMT(NT A)

The results on the SMT(NT A) benchmarks are reported in Table 7.2. We

can see that MathSAT is able to solve more benchmarks than dReal

and iSAT3. MetiTarski is unable to deal with benchmarks involving

Boolean combinations, and thus could not be run on the BMC and dReal

benchmarks. Similarly to the case of SMT(NRA), dReal is able to solve

only unsatisfiable benchmarks, and returns MaybeSat in many situa-

tions that are in fact unsatisfiable. If we consider the scaled-down case,

iSAT3 demonstrates better performance than dReal on BMC bench-

marks, being able to prove more satisfiable benchmarks. Overall, however,

it is still behind MathSAT. The scatters plots are reported in Fig. 7.7.

The comparison between MathSAT and MetiTarski only considers the

MetiTarski benchmarks. Despite MetiTarski being superior to Math-

SAT in terms of solved instances, we notice that MathSAT can be at

times much faster than MetiTarski, and that it is not strictly dominated

– MetiTarski runs out of memory in many benchmarks that MathSAT

can solve. In fact, there is a substantial difference between the number

of benchmarks solved by MetiTarski (536) and the virtual best solver

(621). The scatters in Fig. 7.7 also confirm the complementarity between

incremental linearization and interval constraint propagation solvers. It

is possible to notice a stripe of points that are solved in nearly constant

time by dReal and iSAT3 that are increasingly harder for MathSAT.

On the bounded benchmarks, dReal and iSAT3 contribute with almost

200 instances solved to the virtual best (see Table 7.2). This confirms the

potential benefits of integrating interval propagation within incremental

linearization.

114



7.3. RESULTS

T
o
ta

l

B
M

C

M
e
tiT

a
rsk

i

d
R

e
a
l

(2512) (887) (681) (944)

MathSAT 58/1198 44/541 0/299 14/358

dReal 0(1177)/761 0(294)/392 0(368)/267 0(528)/102

MetiTarski 0/536 - 0/536 -

VirtualBest 58/1588 44/546 0/621 14/421

MathSAT 50/1139 39/547 0/313 11/279

iSAT3 43(1316)/733 36(270)/475 0(455)/195 7(591)/63

dReal 0(1056)/782 0(267)/403 0(293)/269 0(496)/110

VirtualBest 70/1317 53/565 0/406 17/346

Table 7.2: Summary of SMT(NT A) experimental results (original problems above,

bounded version below)

115



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NTA) -- SAT+UNSAT Benchmarks

MathSAT
dReal

MetiTarski
virtual-best

Figure 7.6: Survival plots for SMT(NT A) – unbounded benchmarks

116



7.3. RESULTS

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NTA) -- SAT Benchmarks

MathSAT
virtual-best

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NTA) -- UNSAT Benchmarks

MathSAT
dReal

MetiTarski
virtual-best

Figure 7.6: Survival plots for SMT(NT A) – unbounded benchmarks

117



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

d
R

e
a
l

MathSAT

MathSAT solves

636 benchmarks

that are not solved

by dReal, and

141 vice versa.

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

M
e
ti
T

a
rs

k
i

MathSAT

MathSAT solves

1018 benchmarks

that are not solved

by MetiTarski,

and 298 vice versa.

Figure 7.7: Scatters plots for SMT(NT A) – unbounded benchmarks

118



7.3. RESULTS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NTA) -- SAT+UNSAT Benchmarks (Bounded)

MathSAT
iSAT3
dReal

virtual-best

Figure 7.8: Survival plots for SMT(NT A) – bounded benchmarks

119



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NTA) -- SAT Benchmarks (Bounded)

MathSAT
iSAT3

virtual-best

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NTA) -- UNSAT Benchmarks (Bounded)

MathSAT
iSAT3
dReal

virtual-best

Figure 7.8: Survival plots for SMT(NT A) – bounded benchmarks

120



7.3. RESULTS

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

d
R

e
a
l

MathSAT

MathSAT solves

559 benchmarks

that are not solved

by dReal, and

152 vice versa.

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

iS
A

T
3

MathSAT

MathSAT solves

506 benchmarks

that are not solved

by iSAT3, and 93

vice versa.

Figure 7.9: Scatters plots for SMT(NT A) – bounded benchmarks

121



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

Results for SMT(NIA)

The results of the SMT(NIA) benchmarks are reported in Table 7.3.

MathSAT solves the highest number of satisfiable and unsatisfiable in-

stances. It solves a total of 16716 problems; the closest to MathSAT is

Yices which solves 15785 problems. z3, SMT-RAT, and CVC4 are able

to solve less than 10000 benchmarks. Notice that Yices implements a

combination of expensive NRA quantifier elimination (CAD) and branch-

and-bound technique, while z3 and SMT-RAT rely on bit-blasting, and

CVC4 is using a variant of incremental linearization. The difference be-

tween MathSAT and VirtualBest is around 2000 instances; that sug-

gests some complementarity among the approaches. It is also evident from

the survival and scatters plots, shown in Fig. 7.10 and Fig. 7.11 5, respec-

tively. The plots also show an interesting behavior: Despite Yices being

able to solve fewer benchmarks than MathSAT, it is faster than Math-

SAT on some benchmarks. (This scenario can also be observed to a less

extent when comparing MathSAT against the bit-blasting approaches.)

This observation is another point in favor of complementarity among the

approaches.

We notice that the simple model-finding technique (discussed in §6.3)

is surprisingly useful on the NIA benchmarks. In fact, almost 60% of the

benchmarks are known to be satisfiable – MathSAT solves 83% of them.

We notice a difference between the performance of MathSAT and

CVC4. As mentioned earlier, CVC4 also implements a variant of in-

cremental linearization, the difference between the solved satisfiable in-

stances is similar to the trend we saw in the NRA benchmarks result,

since CVC4 does not use a separate satisfiability detecting heuristic simi-

lar to what MathSAT implements. However, the difference in the solved

5For better readability, we also show separate scatters plots for the satisfiable and unsatisfiable cases.

122



7.3. RESULTS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NIA) -- SAT+UNSAT Benchmarks

MathSAT
CVC4

Z3
Yices

SMT-RAT
virtual-best

Figure 7.10: Survival plots for SMT(NIA) benchmarks

123



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NIA) -- SAT Benchmarks

MathSAT
CVC4

Z3
Yices

SMT-RAT
virtual-best

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

SMT(NIA) -- UNSAT Benchmarks

MathSAT
CVC4

Z3
Yices

SMT-RAT
virtual-best

Figure 7.10: Survival plots for SMT(NIA) benchmarks

124



7.3. RESULTS

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

C
V

C
4

MathSAT

MathSAT solves

8672 (6479 SAT

and 2193 UNSAT)

benchmarks that

are not solved by

CVC4, and 327

(209 SAT and

118 UNSAT) vice

versa.

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

C
V

C
4

MathSAT

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

C
V

C
4

MathSAT

Figure 7.11: Scatters plots for SMT(NIA) benchmarks

125



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Z
3

MathSAT

MathSAT solves

7415 (5147 SAT

and 2268 UNSAT)

benchmarks that

are not solved

by z3, and 529

(417 SAT and

112 UNSAT) vice

versa.

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Z
3

MathSAT

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Z
3

MathSAT

Figure 7.11: Scatters plots for SMT(NIA) benchmarks

126



7.3. RESULTS

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Y
ic

e
s

MathSAT

MathSAT solves

2436 (1776 SAT

and 660 UNSAT)

benchmarks that

are not solved by

Yices, and 1505

(861 SAT and

644 UNSAT) vice

versa.

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Y
ic

e
s

MathSAT

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Y
ic

e
s

MathSAT

Figure 7.11: Scatters plots for SMT(NIA) benchmarks

127



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

S
M

T
-R

A
T

MathSAT

MathSAT solves

10808 (6191 SAT

and 4617 UNSAT)

benchmarks that

are not solved by

SMT-RAT, and

667 (629 SAT and

38 UNSAT) vice

versa.

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

S
M

T
-R

A
T

MathSAT

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

S
M

T
-R

A
T

MathSAT

Figure 7.11: Scatters plots for SMT(NIA) benchmarks

128



7.3.
R

E
S
U

L
T

S

T
o
ta

l

A
P

ro
V

E

C
a
ly

p
to

L
a
sso

R
a
n
k
e
r

L
C

T
E

S

L
e
ip

zig

M
C

M

U
ltim

a
te

A
u

to
m

ize
r

U
ltim

a
te

L
a
sso

R
a
n

k
e
r

V
e
ry

M
a
x

(23876) (2409) (177) (106) (2) (167) (186) (7) (32) (20790)

MathSAT 11723/4993 1642/561 79/89 4/100 0/1 126/2 12/0 0/7 6/26 9854/4207

CVC4 5453/2918 1309/610 63/89 4/90 0/1 83/2 14/5 0/6 6/26 3974/2089

z3 6993/2837 1656/325 78/96 4/92 0/0 162/0 20/1 0/7 6/26 5067/2290

Yices 10808/4977 1595/708 79/97 4/84 0/0 92/1 8/0 0/7 6/26 9024/4054

SMT-RAT 6161/414 1663/184 79/89 3/20 0/0 160/0 21/0 0/1 6/26 4229/94

VirtualBest 13148/5672 1663/724 79/97 4/101 0/1 162/2 25/6 0/7 6/26 11209/4708

Table 7.3: Summary of SMT(NIA) experimental results

129



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

unsatisfiable benchmarks is somewhat surprising. A more in-depth look at

CVC4 reveals that the default configuration does not enable the tangent

plane refinement. It suggests that the tangent plane refinement in incre-

mental linearization is important for proving unsatisfiability of the NIA
benchmarks.

It is worth to mention that MathSAT uniquely solves 2617 benchmarks

with the exception of CVC4 (if we include CVC4 in the comparison, then

the number becomes 2249). It also solves 2133 benchmarks with unknown

status in SMT-LIB. 6

In the VeryMax benchmarks family which contains 20790 instances,

MathSAT dominantly solves most problems. The difference between

MathSAT and Yices is 983, whereas the difference concerning the solvers

based on bit-blasting approaches is between 6704 to 9783. These bench-

marks are coming from a practical domain – termination analysis of soft-

ware programs [BBL+17]. The relatively poor performance of the bit-

blasting approaches on these problems suggests that they are not adequate

for such application domains. On the other hand, incremental linearization

and CAD with branch-and-bound are quite effective in this family.

6This value refers to the tagging of the SMT-LIB on 2017-06-17.

130



Summary

In this part, we addressed the SMT problem with respect to the theo-

ries of nonlinear arithmetic and transcendental functions. The key idea is

to abstract nonlinear and transcendental functions as uninterpreted func-

tions in the combined theories of LA and UF , for which efficient solvers

exist. The uninterpreted functions in the abstract domain, corresponding

to nonlinear and transcendental functions in the original theory, are incre-

mentally axiomatized through upper- and lower-bounding piecewise-linear

constraints. The refinement is driven by the existence of spurious models.

In the case of transcendental functions, the management of irrational val-

ues is particularly tricky, and care is required to ensure the soundness of

the abstraction.

The approach is proved correct, and it has been implemented in the

MathSAT SMT solver. We carried out an extensive experimental evalua-

tion on a broad set of SMT benchmarks, and the results clearly demonstrate

the effectiveness of incremental linearization. In particular we can make

the following general remarks:

• Incremental linearization is highly competitive for NRA. Given the

maturity of the other solvers, we found it quite surprising to discover

how well it compares on the SMT(NRA) benchmarks.

• Incremental linearization appears to be a very effective technique to

deal with transcendental functions, a theory for which no complete

131



CHAPTER 7. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

methods are available. A key factor in the case of trigonometric func-

tions appears to be the idea of reduction to the base interval. In-

cremental linearization could be improved further by integration with

interval-based techniques.

• Incremental linearization remarkably outperform state-of-the-art

SMT(NIA) techniques, in terms of total number of solved instances.

• The satisfiability-oriented methods presented in this part are often

able to conclude Sat in cases where complete techniques bail out or

do not exist.

132



Part III

Verification Modulo Nonlinear

Arithmetic and Transcendental

Functions





Overview

VMT is a fundamental research area (e.g., checking invariants for infinite-

state transition systems). In general, given a theory, VMT is harder than

SMT, due to the underlying notion of reachability: VMT is undecidable

even for relatively simple theories such as LRA [HKPV98]. Yet, VMT(LA)

tools are reasonably effective in practice, based on the power of SMT(LA)

solvers and the ability to automatically construct abstractions. This is

hardly the case for invariant checking for nonlinear transition systems. In

fact, many real-world industrial design (e.g., aerospace, automotive) re-

quire modeling as transition systems over nonlinear arithmetic and tran-

scendental functions.

In this part, we address the problem of checking invariants for transition

systems over NT A. Our main contribution lies in extending incremental

linearization for the case of VMT, that is described in Chapter 8.

We have implemented the approach in the nuXmv VMT model checker,

relying on the IC3 with implicit abstraction [CGMT16] engine. The imple-

mentation details and the experimental evaluation are presented in Chap-

ter 9.

Remark 5. In principle, the procedure proposed later in this part can also

work for NIA. However, we skip the discussion here since currently, we

do not have the infrastructure for evaluating it. This is left as a future

work.

135





Chapter 8

VMT via Incremental Linearization

Similar to the SMT case, the idea of incremental linearization for VMT is

to abstract transition systems in the LA and UF domain. The uninter-

preted functions are used to model nonlinear and transcendental functions

in transition systems. Then, we eliminate spurious counterexamples in

VMT(UFLA) by incrementally adding linear constraints to tighten the

piecewise-linear envelope around the (uninterpreted counterpart of the)

abstract multiplication and transcendental functions.

The underlying rationale is that, for many practical problems, reasoning

with full precision over nonlinear and transcendental functions may not be

necessary. For example, constructing a piecewise-linear invariant may be

sufficient to prove that the (nonlinear) transition system at hand satisfies

a given property. The linearization is performed incrementally and only

when and where needed, driven by the spurious counterexamples.

By means of Incremental linearization, we also tackle invariant check-

ing for transition systems over NRA and transcendental functions. The

key insight is to implement the Counterexample Guided Abstraction Re-

finement (CEGAR) [CGJ+00] loop on top of an abstract version of the

transition system expressed over UFLRA. We leverage the characteristics

of a recently introduced approach [CGMT16] based on the combination of

137



CHAPTER 8. VMT VIA INCREMENTAL LINEARIZATION

IC3 and predicate abstraction.

We remark that this approach based on incremental linearization

has strong advantages over other VMT(NT A) approaches that could

be obtained from traditional SMT-based algorithms by delegating the

management of nonlinearity to an SMT(NT A) solver. BMC and k-

induction [SSS00, ES03b] are be relatively simple to implement (given an

SMT solver for the required theory) but have very limited effectiveness

when it comes to proving properties over infinite-state transition systems.

Extending other approaches (e.g., interpolation, IC3 [McM03, CGMT16])

to handle nonlinearities at the level of the solver would require the

SMT(NRA) solver (or, worse, the SMT(NT A) solver), to carry out in-

terpolation or quantifier elimination, and to proceed incrementally. These

extra functions are usually not available, or they have a very high compu-

tational cost.

Structure of the Chapter. We describe the VMT(NT A) procedure based

on incremental linearization in §8.1. In §8.2 we present the correctness

proof of the procedure, and we discuss related work in §8.3.

8.1 Incremental Linearization for VMT(NT A)

We now consider the problem of VMT(NT A), exploring several ap-

proaches. A first direction is the direct use of an SMT(NT A) solver, like

the one described in previous sections, to extend known SMT-based verifi-

cation algorithms. This extension can be relatively easy in the case of BMC

and k-induction, given that both techniques interact with the SMT(NT A)

solver largely as if it were a “black box”, as shown in Fig. 8.1.

Although effective in the finite-state case for safe instances in some

practical cases, k-induction turns out to be quite weak even for NRA.

138



8.1. INCREMENTAL LINEARIZATION FOR VMT(NT A)

VMT

SMT

NT A

VMT(NT A)

SMT(NT A)

Figure 8.1: Solving VMT(NT A) via SMT(NT A)-based procedures

Consider for example the transition system 〈I(X), T (X,X ′)〉 s.t.

I(X) =̇ x ≥ 2 ∧ y ≥ 2 ∧ z = x ∗ y,

T (X,X ′) =̇ x′ = x+ 1 ∧ y′ = y + 1 ∧ z′ = x′ ∗ y′

The property P (X)
.
= z ≥ x + y is not k-inductive, not even for a very

large value of k. Thus, the typical proving techniques based on k-induction

using an SMT(NRA) solver will not be able to prove it.

Thus, one could explore the extension to NT A of other SMT-

based approaches, such as interpolation-based verification or IC3 (e.g.,

[CGMT16, HB12b, KGC16b, BBW14]), that are often more effective than

k-induction. However, there are substantial difficulties in lifting them to

the case of NT A. First, they require an interpolating SMT(NT A) solver,

which is not available. Second, the effectiveness of IC3 depends on an

efficient, incremental interaction with the underlying SMT engine, which

is asked to solve a large number of relatively cheap and often satisfiable

queries. The procedure of §6.1, however, can be very expensive, especially

for satisfiable queries. Finally, some IC3 extensions require the ability to

perform (approximated) quantifier eliminations, a feature not provided by

the algorithm of Fig. 6.1.

139



CHAPTER 8. VMT VIA INCREMENTAL LINEARIZATION

VMT

SMT

UFLRA

VMT(UFLRA)

SMT(UFLRA)

NT A

Abstractor

Concretizer

SMT(NT A)

UNSAFE

SAFE

Figure 8.2: Solving VMT(NT A) via incremental linearization

Therefore, we propose a new direction, that radically differs from plug-

ging a solver for SMT(NT A) into a known SMT-based algorithm. Instead,

we adopt an abstraction-refinement approach, lifting the concepts of incre-

mental linearization of NT A at the transition system level. In this ap-

proach, the VMT(NT A) problem is abstracted to a VMT(UFLRA) ver-

ification problem. A very efficient verification engine for VMT(UFLRA)

is used as a black box, and the abstraction is refined in order to rule out

spurious counterexamples. (See Fig. 8.2)

8.1.1 The Main Procedure

The pseudo-code of the main procedure is reported in Fig. 8.3. The main

function IC3-NTA-prove takes as input a transition system S and a

formula ϕ and checks if ϕ is an invariant property of S. Notice that,

as with SMT-NTA-check in §6.1, IC3-NTA-prove is not guaranteed

to terminate, so that we implicitly assume that it is stopped as soon as

some given resource budget (e.g., time, memory, number of iterations) is

140



8.1. INCREMENTAL LINEARIZATION FOR VMT(NT A)

bool IC3-NTA-prove (S : transition system 〈X, I, T 〉, ϕ : invariant property):

1. 〈S ′, ϕ′〉 := VMT-preprocess(S, ϕ)

2. 〈Ŝ, ϕ̂〉 := VMT-initial-abstraction(S ′, ϕ′)
3. while true:

4. 〈ok, ĉex〉 := IC3-UFLRA-prove(Ŝ, ϕ̂)

5. if ok: # property proved

6. return true

7. 〈is cex, Γ〉 := SMT-NTA-concretize-abstract-cex(S ′, Ŝ, ϕ̂, ĉex)

8. if is cex: # counterexample found

9. return false

10. 〈ΓI ,ΓT 〉 := refine-transition-system(Ŝ,Γ)

11. Ŝ := 〈X, Î ∧
∧

ΓI , T̂ ∧
∧

ΓT 〉

Figure 8.3: Verification of NT A transition systems via abstraction to UFLRA

exhausted.

We first apply a preprocessing step to 〈S, ϕ〉 (function

VMT-preprocess) which is analogous to that of SMT-preprocess

in SMT-NTA-check, producing 〈S ′, ϕ′〉. Then we generate 〈Ŝ, ϕ̂〉, an

abstract UFLRA version of the input NT A transition system S and

invariant ϕ, by invoking VMT-initial-abstraction. As with the SMT

case, the VMT-initial-abstraction function replaces every non-linear

multiplication and transcendental function in the transition system and

property with the corresponding uninterpreted function symbol.

Then the procedure enters a loop (lines 3-11). At each itera-

tion, the pair 〈Ŝ, ϕ̂〉 is first checked by IC3-UFLRA-prove which

implements IC3ia 1 [CGMT16], a procedure for VMT(UFLRA) that

extends IC3 with implicit predicate abstraction [Ton09]. If the in-

variant property is verified in the abstract domain UFLRA, then

1Notice that, other approaches, such as interpolation-based model checking, could in principle be used.

Here we consider IC3ia because it is currently the most effective procedure for VMT(UFLRA), and also

because it allows us to leverage incrementality.

141



CHAPTER 8. VMT VIA INCREMENTAL LINEARIZATION

〈constraint set, constraint set〉 refine-transition-system (Ŝ, Γ):

1. let 〈X, Î, T̂ 〉 = Ŝ
2. 〈ΓI ,ΓT 〉 := 〈∅, ∅〉
3. for each γ in Γ:

4. if vars(γ) ⊆ X〈0〉:

5. ΓI := ΓI ∪ {γ{X〈0〉 7→ X}}
6. else if there exists i > 0 s.t. vars(γ) ⊆ X〈i〉:

7. ΓT := ΓT ∪ {γ{X〈i〉 7→ X}, γ{X〈i〉 7→ X ′}}
8. else there exists i > 0 s.t. vars(γ) ⊆ X〈i〉 ∪X〈i+1〉:

9. ΓT := ΓT ∪ {γ{X〈i〉 7→ X}{X〈i+1〉 7→ X ′}}
10. return 〈ΓI ,ΓT 〉

Figure 8.4: Refinement of the UFLRA transition system

it is also verified in the original NT A domain, so that the whole

procedure returns true. Otherwise, a counterexample is produced,

and the SMT-NTA-concretize-abstract-cex primitive is used to

check whether it is spurious. If not so, then the whole pro-

cedure returns false. If so, the linear constraints generated by

SMT-NTA-concretize-abstract-cex are used to refine the abstrac-

tion of the transition system, and the procedure enters a new iteration.

8.1.2 Spuriousness Check and Abstraction Refinement

When IC3-UFLRA-prove returns a counterexample trace

ĉex for the abstract system Ŝ, we use the dedicated routine

SMT-NTA-concretize-abstract-cex to check for its spurious-

ness. The first step is to build a formula ψ whose unsatisfiability

implies that ĉex is spurious. The formula ψ is built by unrolling the

transition relation of Ŝ, and optionally adding constraints that restrict

the allowed transitions to be compatible with the states in ĉex. If

SMT-NTA-concretize-abstract-cex returns true, the property

142



8.1. INCREMENTAL LINEARIZATION FOR VMT(NT A)

is violated. If SMT-NTA-concretize-abstract-cex returns false,

we use the constraints Γ produced during search to refine the tran-

sition system Ŝ, using the procedure shown in Fig. 8.4. Essentially,

refine-transition-system translates back the linearization constraints

from their unrolled version (on variables X〈0〉, X〈1〉, . . . , X〈k〉) to their “un-

timed” version (on variables X and X ′). Each γ constraint is added either

to the initial-states formula or to the transition relation formula, depend-

ing on the distance (in terms of steps) of the variables occurring in it. Care

must be taken in order to deal with the case where γ spawns across mul-

tiple time points: The routine SMT-NTA-concretize-abstract-cex

is similar in spirit to the SMT-NTA-check (discussed in §6.1), but

it is designed in such a way that the constraints in Γ never span

more than a single transition step – for example, a monotonicity con-

straint over terms tf(x〈i〉) and tf(y〈j〉) is instantiated only if j = i

or j = i + 1. Note that, despite the restriction in the constraints in-

stantiation, SMT-NTA-concretize-abstract-cex is as powerful as

SMT-NTA-check in detecting the spuriousness of a counterexample.

This is because SMT-NTA-concretize-abstract-cex can basically

instantiate a finite number of constraints restricted to a single transition

step such that their conjunction is equivalent to any constraint instantiated

by SMT-NTA-check.

Example

We now demonstrate the execution of the procedure in Fig. 8.3 by an

example.

Example 8.1. Consider the earlier mentioned transition system

143



CHAPTER 8. VMT VIA INCREMENTAL LINEARIZATION

S =̇ 〈I(X), T (X,X ′)〉 with the property P (X):

I(X) =̇ x ≥ 2 ∧ y ≥ 2 ∧ z = x ∗ y,

T (X,X ′) =̇ x′ = x+ 1 ∧ y′ = y + 1 ∧ z′ = x′ ∗ y′

P (X) =̇ z ≥ x+ y

After the initial abstraction, line 1-2, we have 〈Ŝ, P̂ (X)〉 where:

Ŝ =̇ 〈Î(X), T̂ (X,X ′)〉

Î(X) =̇ x ≥ 2 ∧ y ≥ 2 ∧ z = f∗(x, y),

T̂ (X,X ′) =̇ x′ = x+ 1 ∧ y′ = y + 1 ∧ z′ = f∗(x
′, y′)

P̂ (X) =̇ z ≥ x+ y

In the loop (line 3-11), after execution of line 4, IC3-UFLRA-prove

returns an abstract counterexample of length 2. Then

SMT-NTA-concretize-abstract-cex tries to concretize the abstract

counterexample: in simplest form it builds a BMC unrolling of length

2 (see §9.1 for more details). SMT-NTA-concretize-abstract-cex

returns false (meaning that the abstract counterexample is spurious) and

the following set of linear constraints:

Γ =̇ { (x〈1〉 > 2 ∧ y〈1〉 > 2)→ f∗(x
〈1〉, y〈1〉) > 2 ∗ x〈1〉 + 2 ∗ y〈1〉 − 4 }

Next, refine-transition-system refines Ŝ using Γ, such that:

Î(X) =̇ x ≥ 2 ∧ y ≥ 2 ∧ z = f∗(x, y),

T̂ (X,X ′) =̇ x′ = x+ 1 ∧ y′ = y + 1 ∧ z′ = f∗(x
′, y′) ∧

(x > 2 ∧ y > 2)→ f∗(x, y) > 2 ∗ x+ 2 ∗ y − 4 ∧

(x′ > 2 ∧ y′ > 2)→ f∗(x
′, y′) > 2 ∗ x′ + 2 ∗ y′ − 4

After the refinement, another iteration of the loop is performed. Now

IC3-UFLRA-prove returns true (meaning that the property is safe in

Ŝ), which means P (X) is safe in S. Therefore, true is returned. 4

144



8.2. PROOF OF CORRECTNESS

8.2 Proof of Correctness

We prove that the IC3-NTA-prove procedure (Fig. 8.3) is sound. First

we show that the procedure maintains an over-approximation of the input

transition system. Consider a generic loop in IC3-NTA-prove (Line 10-

11) and let Ŝ := 〈X, Î ∧
∧

ΓI , T̂ ∧
∧

ΓT 〉 at the end of the loop.

Lemma 8.2. Ŝ is an over-approximation of S.

Proof. We need to show that for every path σk in S, there is a path σ̂k in

Ŝ. This is true because:

• by definition of σk, we have s0 |= I(X) and si ∧ si+1{X 7→ X ′} |=
T (X,X ′) for 0 ≤ i ≤ k − 2, and

• similar to the the proof of Lemma 6.7, we can construct a path σ̂k in a

such way that ŝ0 |= Î∧
∧

ΓI and ŝi∧ŝi+1{X 7→ X ′} |= T̂ (X,X ′)∧
∧

ΓT

for 0 ≤ i ≤ k − 2.

Hence the statement holds.

Lemma 8.3. S 6|= ϕ implies Ŝ 6|= ϕ̂.

Proof. S 6|= ϕ means there is a path σk = s0, s1, . . . , sk−1 in S such that

sk−1 |= ¬ϕ. Then by Lemma 8.2, we can also construct a path σ̂k =

ŝ0, ŝ1, . . . , ŝk−1 in Ŝ in a way that ŝk−1 |= ¬ϕ̂ (similar to the proof of

Lemma 6.7). Hence the statement holds.

Lemma 8.4. IC3-UFLRA-prove(Ŝ, ϕ̂) is sound, i.e., when it returns

〈True, . . .〉 then Ŝ |= ϕ̂, and when it returns 〈False, ĉex〉 then Ŝ 6|= ϕ̂

where ĉex is a counterexample.

Proof. Proof omitted – see [CGMT16].

Theorem 8.5. IC3-NTA-prove(S, ϕ) is sound, i.e., when it returns

True then S |= ϕ and when it returns False then S 6|= ϕ.

145



CHAPTER 8. VMT VIA INCREMENTAL LINEARIZATION

Proof. IC3-NTA-prove(S, ϕ) return true only when

IC3-UFLRA-prove(Ŝ, ϕ̂) returns 〈True, . . .〉. By Lemma 8.2 and

Lemma 8.3, S |= ϕ. IC3-NTA-prove(S, ϕ) return false only when

the simulation of the abstract counterexample ĉex (Lemma 8.4) by the

SMT-NTA-concretize-abstract-cex succeeds, and by Theorem 6.9

S 6|= ϕ.

8.3 Related Work

As mentioned earlier, there are not many tools that work on symbolic

transition systems over NT A. iSAT3 and dReach are two tools which

can return “safe” or “unsafe” or “maybe unsafe” result. They use nonlinear

solvers based on interval constraint propagation. In contrast, our approach

is based on linearization. Unlike iSAT3 and dReach, we avoid numerical

approximation, and thus provide definite answers – safe or unsafe. Notice

that dReach is a bounded model checker, and it can not prove unbounded

properties; iSAT3 uses interpolation-based approach. In contrast, we are

not only able to use BMC and k-induction, but also a more powerful IC3-

based technique, i.e., IC3ia.

In the context of NRA, the work in [CGKT16, MFK+16] performs

linearization statically at the beginning of the analysis, whereas our lin-

earization technique is done incrementally. Moreover, they use an LRA
solver under the hood. Instead we rely on a UFLRA solver.

146



Chapter 9

Implementation and Experimental

Evaluation

The VMT procedures presented in the previous chapter have been imple-

mented within the nuXmv VMT model checker [CCD+14]. The descrip-

tion of the procedures leaves some flexibility for different heuristics regard-

ing refinement strategies and implementation choices. In the next section,

we describe the most important ones. We remark that these choices do

not affect the soundness of the approach, but they can have an important

impact on performance.

The nuXmv VMT model checker has been extended to deal with non-

linear multiplications and with the transcendental functions supported by

its underlying SMT solver MathSAT. The verification engines of nuXmv

have been extended to deal with invariant checking based on Bounded

Model Checking, k-induction, and incremental linearization over IC3. The

implementation of BMC and k-induction extends the algorithms already

implemented in nuXmv for the LRA case. This extension was relatively

simple, given the augmented capabilities of the underlying MathSAT

solver. We also extended nuXmv with the capability to output BMC and

k-induction proof obligations in SMT-LIB format. 1 The implementation

1More precisely, with the extension of the SMT-LIB format to transcendental function symbols.

147



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

of the VMT(NT A) algorithm based on incremental linearization was more

involved. It builds on top of the best nuXmv engine for VMT(UFLRA),

i.e., IC3 with Implicit Abstraction [CGMT16], leveraging its stateful, in-

cremental nature. We chose not to implement the incremental linearization

loop on top of an induction-based engine. We have no reason to believe

that it would bring significant added value. Given the complementarity

between IC3 and interpolation-based methods demonstrated in the finite-

state case, an incremental linearization loop over an interpolation-based

solver for VMT(UFLRA) might yield additional solving capability, and it

is currently under consideration.

9.1 Implementation Details

Counterexample Checking and Refinement

Different heuristics can be considered for implementing the

abstract counterexample check routine of Fig. 8.3 (function

SMT-NTA-concretize-abstract-cex), trading generality for com-

plexity. In particular, the unrolling of the transition system to check the

feasibility of the abstract counterexample could be fully constrained by

the states in ĉex (thus checking only one abstract counterexample path

per iteration); it could be only partially constrained (e.g., by considering

only the Boolean variables and/or the state variables occurring only in

linear constraints); or it could be left unconstrained, considering only the

length of the abstract counterexample. In our current implementation,

we only consider the length of ĉex to build a BMC formula that checks

for any counterexample of the given length, leaving the investigation of

alternative strategies to future work.

148



9.1. IMPLEMENTATION DETAILS

〈constraint set, constraint set〉 reduce-constraints (〈X, Î, T̂ 〉, ĉex, 〈ΓI ,ΓT 〉):
1. ψ := I〈0〉 ∧ Γ

〈0〉
I ∧ ĉex[0]〈0〉 ∧

∧|ĉex|−1
i=0

(
T 〈i〉 ∧ Γ

〈i〉
T ∧ Γ

〈i+1〉
T ∧ ĉex[i+ 1]〈i+1〉

)
2. sat := SMT-UFLRA-check(ψ)

3. assert not sat

4. let C be an unsatisfiable core of ψ

5. ΓI = {γ ∈ ΓI | γ{X 7→ X〈0〉} ∈ C}
6. ΓT = {γ ∈ ΓT | ∃j > 0 s.t. γ{X 7→ X〈j〉}{X ′ 7→ X〈j+1〉} ∈ C}
7. return 〈ΓI ,ΓT 〉

Figure 9.1: Reducing the constraints needed for refinement

Reduction in the Number of Constraints

In general, not all the constraints generated during a call to

SMT-NTA-concretize-abstract-cex are needed to successfully block

a counterexample, especially when using eager constraint instantiation

strategies at the SMT level and when considering (like described above)

all possible counterexample traces of a given length at each call to

SMT-NTA-concretize-abstract-cex. In the long run, having a large

number of redundant constraints can be quite harmful for performance.

In order to mitigate this problem, we apply a filtering strategy to the set

of constraints, before adding them to the transition system. The strategy

is based on the use of unsatisfiable cores, and it is shown as pseudo-code

in Fig. 9.1. The function reduce-constraints takes as input the cur-

rent abstract transition system, the current abstract counterexample ĉex,

and the sets of refinement constraints ΓI and ΓT returned by the function

refine-transition-system of Fig. 8.4. Then it builds an abstract BMC

formula constrained by ĉex (line 1 of Fig. 9.1). This formula is unsatisfi-

able, and we can extract a reduced set of constraints that is still sufficient

for blocking the abstract counterexample by removing all the constraints

that are not in the unsatisfiable core produced by the SMT solver (lines

149



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

5–6).

9.2 Experimental Setup

We now experimentally evaluate the proposed approaches for VMT. The

experiments were run on a cluster of identical machines equipped with

2.6GHz Intel Xeon X5650 processors. The memory limit was set to 6

GB. We used 3600 seconds for the VMT experiments. (The time out for

VMT was dictated by restrictions in the computing power available, but

appears to be reasonable given the number of benchmarks.) The results of

the various solvers were automatically cross checked, and no discrepancies

were reported.

We present the data using tables, survival plots, and scatters plots.

The tables present detailed results: each column represents a benchmark

family, each entry shows the number of sat/unsat results reported, for tools

reporting MaybeUnsafe the number is shown in parentheses, the best

performer for each family is highlighted in boldface, and the overall best

is underlined. The survival plots compare the performance of multiple

approaches. The x-axis shows the solving time in log-scale, and the y-

axis shows the number of instances solved within the corresponding time.

(Notice that we may use different scales on different plots.) The scatters

plots compare pairwise solvers S1 and S2 on individual benchmarks: each

point (t1, t2) in a scatters represents a benchmark problem that was solved

in time ti by solver Si. We adopt a logarithmic scale, and report time

out and memory out as separate lines. Red [blue, respectively] dots are

for unsafe [safe, resp.] instances. Green dots indicate unknown instances.

Diagonal lines mark 2x and 10x performance differences. Points on the

inner edges indicate timeouts, those on the outer edges indicate other errors

(memory outs or aborts). In the comparison, by VirtualBest we mean

150



9.2. EXPERIMENTAL SETUP

the results of a virtual portfolio solver that performs on each benchmark

as the best of the solvers in the portfolio.

Benchmarks

We collected 114 benchmarks over VMT(NRA) and 126 benchmarks over

VMT(NT A). The VMT(NRA) benchmarks set consists of the following

families:

• Handcrafted: 14 (13 safe and 1 unsafe) benchmarks.

• HyComp: 7 (3 safe, 4 unsafe) benchmarks from [CMT12] and con-

verted to VMT(NRA) using HyComp [CGMT15].

• HYST: 65 benchmarks generated from the hybrid systems examples

in the HYST [BBJ15] distribution, by approximating the continuous

time with a fixed rate sampling. This process is done automatically

using an extended version of HYST. Since the generated benchmarks

are approximations, their status is unknown.

• iSAT3 and iSAT3-CFG: 11 (7 safe, 4 unsafe) benchmarks

from [MSN+16] and the iSAT3 examples available online.

• nuXmv: 2 safe benchmarks, with complex Boolean structure, from

the nuXmv users’ mailing list.

• SAS13: 13 benchmarks are generated from the C programs used

in [BDG+13], but interpreted overNRA instead of the theory of IEEE

floating-point numbers. This makes some of the instances unsafe.

• TCM: 2 safe benchmarks from the Simulink models (taken from the

case study [BBD+15]), and converted them to VMT(NRA) via the

Simulink to nuXmv flow (see Chapter 10).

151



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

The VMT(NT A) benchmarks set consists of the following families:

• Handcrafted: 3 (safe) benchmarks.

• HARE, HYST, and WBS: 50, 57, and 12 benchmarks obtained from

the discretization (using HyComp [CGMT15]) of the hybrid systems

benchmarks from [RPV17, BBJ15, CMS16] (unknown status).

• iSAT3: 4 benchmarks from the iSAT3 webpage.

Similar to the case of SMT(NT A), we included a scaled-down version of

the VMT(NT A) benchmarks, with real-valued variables constrained to

the [−300, 300] interval, in order to include iSAT3 in the comparison.

The benchmarks of the comparison are expressed in the VMT-LIB lan-

guage 2, that extends the SMT-LIB language so that the SMT formulae

are interpreted as the initial condition and the transition relation of the

transition system. Cross-translation scripts were developed for the iSAT3

and dReal benchmarks.

Other Approaches

We compared the incremental linearization algorithm implemented in

nuXmv (in the following referred to as IncreLin-nuXmv) against the

static abstraction approach proposed (for the case of NRA) in [CGKT16]

(referred to as StaticLin-nuXmv). In the case of NT A, StaticLin-

nuXmv also uses some basic constraints to limit the interpretation of tran-

scendental functions. We also compared IncreLin-nuXmv against vari-

ous approaches based on the direct use of an SMT(NRA) or SMT(NT A)

solver.

2Information available at http://www.vmt-lib.org/. A complete specification of the VMT-LIB

language can be found in the nuXmv User Manual available at https://nuxmv.fbk.eu/downloads/

nuxmv-user-manual.pdf.

152

http://www.vmt-lib.org/
https://nuxmv.fbk.eu/downloads/nuxmv-user-manual.pdf
https://nuxmv.fbk.eu/downloads/nuxmv-user-manual.pdf


9.3. RESULTS

• BMC: BMC-NRA-Z3, based on z3 (limited to NRA); BMC-NRA-

dReal and BMC-NTA-dReal, based on dReal; BMC-NRA-

MathSAT and BMC-NTA-MathSAT, based on MathSAT.

• k-induction: K-induction-NRA-Z3, based on z3 (limited to NRA);

K-induction-NRA-dReal and K-induction-NTA-dReal, based

on dReal; K-induction-NRA-MathSAT and K-induction-NTA-

MathSAT, based on MathSAT.

• The interpolation-based iSAT3 engine [MSN+16], with two dif-

ferent levels of precision – Interpolation-iSAT3[1e−1] and

Interpolation-iSAT3[1e−9].

Remark 6. The BMC and k-induction solvers using dReal are based

on a script developed with the specific objective of this evaluation. When

dReal returns a MaybeSat result on a BMC query (or a base case query)

the script returns MaybeUnsafe. When dReal returns MaybeSat on

an inductive step query the script considers it a failed induction and in-

creases k. This does not hamper the correctness of Safe results. However,

we notice that the loop is slightly different from the one that is implemented

in nuXmv on top of MathSAT and of z3, in that they may run out of

resources trying to prove that an inductive query is satisfiable. The ability

to “bail out” from hard satisfiable inductive checks gives dReal a slight

advantage.

9.3 Results

Results for VMT(NRA)

The results for VMT(NRA) are summarized in Table 9.1. The experimen-

tal results for VMT(NRA) clearly demonstrate the merits of incremental

linearization compared to BMC and k-induction approaches based on the

153



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

VMT(NRA) -- Safe+Unsafe Benchmarks

IncreLin-nuXmv
StaticLin-nuXmv

Interpolation-iSAT3[1e-1]
Interpolation-iSAT3[1e-9]

K-induction-NRA-Z3
K-induction-NRA-MathSAT

K-induction-NRA-dReal
BMC-NRA-MathSAT

BMC-NRA-Z3
BMC-NRA-dReal

virtual-best

Figure 9.2: Survival plots for VMT(NRA) benchmarks

direct usage of SMT(NRA). IncreLin-nuXmv is by far the best solver

among all the available ones, with 81 benchmarks solved against the 50

solved by the runner-up Interpolation-iSAT3[1e−1]. The purely-static

approach of StaticLin-nuXmv only solves 37, thus confirming the im-

portance of incremental refinement of the abstraction. The scatters plot in

Fig. 9.3 reports the comparison on VMT(NRA) problems. We notice that

IncreLin-nuXmv dominates the approaches based on k-induction: every

safe instance solved by k-induction is also solved by incremental lineariza-

tion (with the exception of one instance). Interpolation has some com-

plementarity wrt. incremental linearization: it solves 5 benchmarks where

IncreLin-nuXmv (as well as all the other engines) times out. We conjec-

ture that incremental linearization for SMT(NRA) could be extended to

produce interpolants applicable to verification. We also see that the BMC

154



9.3. RESULTS

 5

 10

 15

 20

 25

 30

 35

 40

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

VMT(NRA) -- Unsafe Benchmarks

IncreLin-nuXmv
Interpolation-iSAT3[1e-1]
Interpolation-iSAT3[1e-9]

K-induction-NRA-MathSAT
K-induction-NRA-Z3
BMC-NRA-MathSAT

BMC-NRA-Z3
virtual-best

 20

 40

 60

 80

 100

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

VMT(NRA) -- Safe Benchmarks

IncreLin-nuXmv
StaticLin-nuXmv

Interpolation-iSAT3[1e-1]
Interpolation-iSAT3[1e-9]

K-induction-NRA-MathSAT
K-induction-NRA-Z3

K-induction-NRA-dReal
virtual-best

Figure 9.2: Survival plots for VMT(NRA) benchmarks

155



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

S
ta

ti
c
L

in
-n

u
X

m
v

IncreLin-nuXmv

IncreLin-nuXmv

solves 44 bench-

marks that are

not solved by

StaticLin-

nuXmv, and 0

vice versa.

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

In
te

rp
o

la
ti
o

n
-i
S

A
T

3
[1

e
-1

]

IncreLin-nuXmv

IncreLin-nuXmv

solves 36 bench-

marks that are

not solved by

Interpolation-

iSAT3[1e−1], and 5

vice versa.

Figure 9.3: Scatters plots of VMT(NRA) benchmarks

156



9.3. RESULTS

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

In
te

rp
o

la
ti
o

n
-i
S

A
T

3
[1

e
-9

]

IncreLin-nuXmv

IncreLin-nuXmv

solves 36 bench-

marks that are

not solved by

Interpolation-

iSAT3[1e−9], and 4

vice versa.

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

K
-i
n

d
u

c
ti
o

n
-N

R
A

-M
a

th
S

A
T

IncreLin-nuXmv

IncreLin-nuXmv

solves 50 bench-

marks that are

not solved by

K-induction-

NRA-MathSAT,

and 2 vice versa.

Figure 9.3: Scatters plots of VMT(NRA) benchmarks

157



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

K
-i
n

d
u

c
ti
o

n
-N

R
A

-Z
3

IncreLin-nuXmv

IncreLin-nuXmv

solves 45 bench-

marks that are

not solved by

K-induction-

NRA-Z3, and 11

vice versa.

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

K
-i
n

d
u

c
ti
o

n
-N

R
A

-d
R

e
a

l

IncreLin-nuXmv

IncreLin-nuXmv

solves 66 bench-

marks that are

not solved by

K-induction-

NRA-dReal , and

1 vice versa.

Figure 9.3: Scatters plots of VMT(NRA) benchmarks

158



9.3. RESULTS

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

B
M

C
-N

R
A

-M
a

th
S

A
T

IncreLin-nuXmv

IncreLin-nuXmv

solves 68 bench-

marks that are not

solved by BMC-

NRA-MathSAT ,

and 2 vice versa.

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

B
M

C
-N

R
A

-Z
3

IncreLin-nuXmv

IncreLin-nuXmv

solves 65 bench-

marks that are not

solved by BMC-

NRA-Z3, and 10

vice versa.

Figure 9.3: Scatters plots of VMT(NRA) benchmarks

159



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

B
M

C
-N

R
A

-d
R

e
a

l

IncreLin-nuXmv

IncreLin-nuXmv

solves 81 bench-

marks that are not

solved by BMC-

NRA-dReal , and

0 vice versa.

Figure 9.3: Scatters plots of VMT(NRA) benchmarks

160



9.3.
R

E
S
U

L
T

S

T
o
ta

l

H
a
n
d
cra

fte
d

H
y
C

o
m

p

H
Y

S
T

IS
A

T
3

IS
A

T
3
-C

F
G

n
u

X
m

v

S
A

S
1
3

T
C

M

(114) (14) (7) (65) (1) (10) (2) (13) (2)

IncreLin-nuXmv 16/65 1/13 1/3 7/34 0/0 2/6 0/2 5/5 0/2

StaticLin-nuXmv 0/37 0/4 0/1 0/19 0/0 0/4 0/2 0/5 0/2

Interpolation-iSAT3[1e−1] 2(47)/48 0(8)/2 0(3)/0 2(23)/34 0/0 0(4)/6 0/0 0(9)/4 0/2

Interpolation-iSAT3[1e−9] 2(19)/47 0(3)/2 0(2)/0 2(3)/32 0/0 0(3)/6 0/0 0(8)/5 0/2

K-induction-NRA-MathSAT 13/20 1/2 0/0 6/12 0/0 1/4 0/0 5/0 0/2

K-induction-NRA-Z3 25/22 1/2 2/0 15/12 0/0 2/6 0/0 5/0 0/2

K-induction-NRA-dReal 0(32)/16 0(4)/2 0(2)/0 0(19)/9 0/0 0(2)/5 0/0 0(5)/0 0/0

BMC-NRA-MathSAT 15/0 1/0 0/0 7/0 0/0 2/0 0/0 5/0 0/0

BMC-NRA-Z3 26/0 1/0 2/0 15/0 0/0 3/0 0/0 5/0 0/0

BMC-NRA-dReal 0(39)/0 0(8)/0 0(2)/0 0(19)/0 0/0 0(3)/0 0/0 0(7)/0 0/0

VirtualBest 26/71 1/13 2/3 15/39 0/0 3/7 0/2 5/5 0/2

Table 9.1: Summary of VMT(NRA) experimental results

161



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

approach based on complete SMT(NRA) techniques is the best in terms

of unsafe instances. This can be due to the fact that we are adopting a

concretization approach that is based on incremental linearization and not

a complete solver.

Results for VMT(NT A)

The results for VMT(NT A) are reported in Table 9.2. Overall, the exper-

imental results clearly demonstrate the merits of incremental linearization

at the level of VMT. IncreLin-nuXmv is by far the best solver among

all the available ones, confirming the trends of the VMT(NRA) case. In

fact, incremental linearization dominates even more in VMT(NT A), given

the lack of complete techniques: the performance of IncreLin-nuXmv is

very close to the virtual best (see Table 9.2). The survival plots reported

in Fig. 9.4 and 9.6, and the scatters plots reported in Fig. 9.5 and 9.7 cor-

roborate these observations. Compared to VMT(NRA), we notice many

more memory-outs, suggesting that the solvers may proceed by brute force

and generate useless lemmas.

162



9.3. RESULTS

 20

 40

 60

 80

 100

 120

 140

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

VMT(NTA) -- Safe+Unsafe Benchmarks

IncreLin-nuXmv
StaticLin-nuXmv

K-induction-NTA-MathSAT
K-induction-NTA-dReal

BMC-NTA-MathSAT
BMC-NTA-dReal

virtual-best

Figure 9.4: Survival plots for VMT(NT A) – unbounded benchmarks

163



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 5

 10

 15

 20

 25

 30

 35

 40

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

VMT(NTA) -- Unsafe Benchmarks

IncreLin-nuXmv
K-induction-NTA-MathSAT

BMC-NTA-MathSAT
virtual-best

 10

 20

 30

 40

 50

 60

 70

 80

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

VMT(NTA) -- Safe Benchmarks

IncreLin-nuXmv
StaticLin-nuXmv

K-induction-NTA-MathSAT
K-induction-NTA-dReal

virtual-best

Figure 9.4: Survival plots for VMT(NT A) – unbounded benchmarks

164



9.3. RESULTS

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

S
ta

ti
c
L

in
-n

u
X

m
v

IncreLin-nuXmv

IncreLin-nuXmv

solves 64 bench-

marks that are

not solved by

StaticLin-

nuXmv, and 0

vice versa.

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

K
-i
n

d
u

c
ti
o

n
-N

T
A

-M
a

th
S

A
T

IncreLin-nuXmv

IncreLin-nuXmv

solves 63 bench-

marks that are

not solved by

K-induction-

NTA-MathSAT,

and 5 vice versa.

Figure 9.5: Scatters plots of VMT(NT A) – unbounded benchmarks

165



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

K
-i
n

d
u

c
ti
o

n
-N

T
A

-d
R

e
a

l

IncreLin-nuXmv

IncreLin-nuXmv

solves 84 bench-

marks that are

not solved by

K-induction-

NTA-dReal, and

0 vice versa.

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

B
M

C
-N

T
A

-M
a

th
S

A
T

IncreLin-nuXmv

IncreLin-nuXmv

solves 71 bench-

marks that are not

solved by BMC-

NTA-MathSAT,

and 5 vice versa.

Figure 9.5: Scatters plots of VMT(NT A) – unbounded benchmarks

166



9.3. RESULTS

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

B
M

C
-N

T
A

-d
R

e
a

l

IncreLin-nuXmv

IncreLin-nuXmv

solves 87 bench-

marks that are not

solved by BMC-

NTA-dReal, and

0 vice versa.

Figure 9.5: Scatters plots of VMT(NT A) – unbounded benchmarks

167



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 20

 40

 60

 80

 100

 120

 140

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

VMT(NTA) -- Safe+Unsafe Benchmarks (Bounded)

IncreLin-nuXmv
StaticLin-nuXmv

Interpolation-iSAT3[1e-1]
Interpolation-iSAT3[1e-9]

K-induction-NTA-MathSAT
K-induction-NTA-dReal

BMC-NTA-MathSAT
BMC-NTA-dReal

virtual-best

Figure 9.6: Survival plots for VMT(NT A) – bounded benchmarks

168



9.3. RESULTS

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

VMT(NTA) -- Unsafe Benchmarks (Bounded)

IncreLin-nuXmv
Interpolation-iSAT3[1e-1]
Interpolation-iSAT3[1e-9]

K-induction-NTA-MathSAT
BMC-NTA-MathSAT

virtual-best

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.01  0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e

s

time

VMT(NTA) -- Safe Benchmarks (Bounded)

IncreLin-nuXmv
StaticLin-nuXmv

Interpolation-iSAT3[1e-1]
Interpolation-iSAT3[1e-9]

K-induction-NTA-MathSAT
K-induction-NTA-dReal

virtual-best

Figure 9.6: Survival plots for VMT(NT A) – bounded benchmarks

169



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

S
ta

ti
c
L

in
-n

u
X

m
v

IncreLin-nuXmv

IncreLin-nuXmv

solves 62 bench-

marks that are

not solved by

StaticLin-

nuXmv, and 0

vice versa.

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

K
-i
n

d
u

c
ti
o

n
-N

T
A

-M
a

th
S

A
T

IncreLin-nuXmv

IncreLin-nuXmv

solves 56 bench-

marks that are

not solved by

K-induction-

NTA-MathSAT,

and 6 vice versa.

Figure 9.7: Scatters plots of VMT(NT A) – bounded benchmarks

170



9.3. RESULTS

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

K
-i
n

d
u

c
ti
o

n
-N

T
A

-d
R

e
a

l

IncreLin-nuXmv

IncreLin-nuXmv

solves 76 bench-

marks that are

not solved by

K-induction-

NTA-dReal, and

0 vice versa.

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

B
M

C
-N

T
A

-M
a

th
S

A
T

IncreLin-nuXmv

IncreLin-nuXmv

solves 70 bench-

marks that are not

solved by BMC-

NTA-MathSAT,

and 6 vice versa.

Figure 9.7: Scatters plots of VMT(NT A) – bounded benchmarks

171



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

B
M

C
-N

T
A

-d
R

e
a

l

IncreLin-nuXmv

IncreLin-nuXmv

solves 86 bench-

marks that are not

solved by BMC-

NTA-dReal, and

0 vice versa.

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

In
te

rp
o

la
ti
o

n
-i
S

A
T

3
[1

e
-1

]

IncreLin-nuXmv

IncreLin-nuXmv

solves 46 bench-

marks that are

not solved by

Interpolation-

iSAT3[1e−1], and 8

vice versa.

Figure 9.7: Scatters plots of VMT(NT A) – bounded benchmarks

172



9.3. RESULTS

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

In
te

rp
o

la
ti
o

n
-i
S

A
T

3
[1

e
-9

]

IncreLin-nuXmv

IncreLin-nuXmv

solves 48 bench-

marks that are

not solved by

Interpolation-

iSAT3[1e−9], and 5

vice versa.

Figure 9.7: Scatters plots of VMT(NT A) – bounded benchmarks

173



C
H

A
P

T
E

R
9.

IM
P

L
E

M
E

N
T

A
T

IO
N

A
N

D
E

X
P

E
R

IM
E

N
T

A
L

E
V

A
L

U
A

T
IO

N

T
o
ta

l

H
a
n
d
cra

fte
d

H
A

R
E

H
Y

S
T

IS
A

T
3

W
B

S

(126) (3) (50) (57) (4) (12)

IncreLin-nuXmv 26/61 0/3 0/43 24/4 0/2 2/9

StaticLin-nuXmv 0/23 0/0 0/15 0/1 0/0 0/7

K-induction-NTA-MathSAT 21/8 0/1 0/0 20/1 0/0 1/6

K-induction-NTA-dReal 0(66)/3 0(0)/0 0(3)/0 0(54)/2 0(0)/0 0(9)/1

BMC-NTA-MathSAT 21/0 0/0 0/0 19/0 0/0 1/0

BMC-NTA-dReal 0(67)/0 0(0)/0 0(4)/0 0(54)/0 0(0)/0 0(9)/0

VirtualBest 31/61 0/3 0/43 29/4 0/2 2/9

IncreLin-nuXmv 25/61 0/3 0/43 23/4 0/2 2/9

StaticLin-nuXmv 0/24 0/0 0/15 0/1 0/1 0/7

Interpolation-iSAT3[1e−1] 27(36)/21 0(0)/3 0(4)/8 27(21)/5 0(1)/3 0(10)/2

Interpolation-iSAT3[1e−9] 23(27)/20 0(0)/3 0(2)/7 23(19)/5 0(0)/3 0(6)/2

K-induction-NTA-MathSAT 22/14 0/3 0/4 22/1 0/0 0/6

K-induction-NTA-dReal 0(55)/10 0(0)/3 0(4)/4 0(42)/1 0(0)/1 0(9)/1

BMC-NTA-MathSAT 22/0 0/0 0/0 22/0 0/0 0/0

BMC-NTA-dReal 0(55)/0 0(0)/0 0(4)/0 0(42)/0 0(0)/0 0(9)/0

VirtualBest 33/63 0/3 0/43 31/5 0/3 2/9

Table 9.2: Summary of VMT(NT A) experimental results (original problems above, bounded version below)

174



Summary

In this part, we tackled the VMT problem (invariant checking) with re-

spect to the theories of nonlinear arithmetic and transcendental functions.

We lifted the idea of incremental linearization from the SMT level to the

VMT level. The main underlying idea is to over-approximate the transi-

tion system by abstracting nonlinear and transcendental functions as un-

interpreted functions. The uninterpreted functions corresponding to the

multiplication function and transcendental functions are axiomatized in-

crementally, driven by sprurious counterexample traces.

We have proved the correctness of the approach. The approach is now

tightly integrated in the nuXmv VMT model checker. Moreover, using in-

cremental linearization, we provide a robust IC3-based verification method

for NRA and NT A. We have evaluated our approach on benchmarks

coming from various practical domains and compared against other avail-

able tools. The experimental results clearly show that the strength of our

approach. From the results, we can also make the following remarks:

• Incremental linearization advances the state of the art in VMT(NRA)

and VMT(NT A).

• Incremental linearization shows complete dominance in the safe bench-

marks (both in the case of NRA and NT A) – clearly, nuXmv is very

close the virtual best solver in the survival plots.

• The satisfiability detecting techniques presented for incremental lin-

175



CHAPTER 9. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

earization perform reasonably well in the case of VMT(NRA), and

even the strongest in VMT(NT A).

176



Part IV

Verification in Systems Design

Automation





Overview

One of the primary motivations of the work we presented earlier in Part II

and III is to improve the capabilities of system design verification. Re-

search in this area has focused on two orthogonal directions: verification

techniques and design methodologies. Often, there is a gap between the

two. For instance, Simulink designs can have nonlinear behavior, but

the main verification tool, i.e., Simulink Design Verifier cannot check

them. In this part, we focus on integrating our proposed verification tech-

nique and other state-of-the-art verification methods in design tools – thus,

attempting to bridge the gap.

We present approaches to integrate nuXmv with Simulink and with

Verilog. We chose Simulink and Verilog as they are widely used in

industry. Moreover, each of them represents a different class of tools from

the perspective of the verification engine integration.

We follow a compilation-based approach, in which a compiler is used

to convert the input model into something that can be easily fed to a

verification engine (via some transformations). This is a typical flow to

connect verification backends. However, developing a compiler that can

handle the design language features and semantic complexities is a tough

challenge. We tackle it by utilizing the code generation capabilities (one

of the benefits of model-based design approaches) of the design tools. In

case of Simulink, C code can be generated via a black-box compiler – the

internal structure of the compiler is not accessible. For the Verilog case,

179



several industrial and academic synthesizers are available that are mostly

white-box compilers – the internal structure of the compiler is available.

Our contributions are the following:

• Integration of nuXmv with Simulink – using a black-box compiler

(Chapter 10). We give the first completely automatic approach to

verify invariant properties of discrete-time synchronous Simulink de-

signs with nonlinear dynamics.

• Integration of nuXmv with Verilog – using a white-box compiler

(Chapter 11). Our work also allows to generate verification bench-

marks at a high-level of abstraction from Verilog designs.

• Implementation and experimental evaluation of the approaches

(Chapter 12) – Simulink to nuXmv is evaluated on an industrial-

level Simulink model containing nonlinear behavior and Verilog

to nuXmv is compared against other Verilog verification tools on

a collection of Verilog benchmarks.

Remark 7. The ideas presented here can also be used for integrating any

infinite-state synchronous model checker.

180



Chapter 10

Simulink to nuXmv

Simulink models can be classified based on the blocks types, timing prop-

erties, and the properties of the simulation solver.

Discrete vs. Continuous vs. Hybrid. A Simulink model is a discrete model

if it does not contain any continuous type block. A discrete model can have

single-rate sampling or multirate sampling (model whose blocks have differ-

ent sampling rate). A model is continuous if it contains continuous blocks

but no discrete block. A model that uses both discrete and continuous

type blocks is called hybrid model.

Simulation Solver. A simulation solver defines how the Simulink model

is solved for simulating the model dynamics. In a way, choosing a solver

tells what simulation semantics will be followed for the given Simulink

model. Solvers are broadly classified using the following criteria:

• The type of step size used in the computation, also shown in Fig. 10.1.

– Fixed-step solvers solve the model at step sizes (constant) for a

given simulation time.

– Variable-step solvers can vary the step sizes during the simulation.

181



CHAPTER 10. SIMULINK TO NUXMV

Figure 10.1: Difference between fixed-step and variable-step [sima]

Figure 10.2: Simulink simulation solver configuration

• The nature of the solver (see Fig. 10.2).

– Discrete solvers are used for solving discrete models.

– Continuous solvers compute the continuous states of a model by

using numerical methods. They are used for simulating continu-

ous or hybrid models.

10.1 Problem Definition

We address the problem of formally verifying invariant properties of

Simulink models. There are some challenges in dealing with Simulink

182



10.1. PROBLEM DEFINITION

models:

Challenge I. Simulink is used for modeling and simulating various kinds

of systems. For that purpose, in addition to the built-in blocks library,

it also offers several add-on products with extended blocks library –

Stateflow being one of them. These extra add-on products add

complexity in handling Simulink models.

Challenge II. Simulink does not have a standard formal semantics; in-

stead, it is given informally as “what the simulator does.”

Challenge III. There is also a challenge of maintaining the tool for the

future releases of Simulink: it can be the case that the functionality

(simulation semantics) of some block is changed.

Environment Model and Assumptions

We focus on Simulink models that use built-in Simulink blocks library,

Stateflow extended add-on, and custom blocks built using the former

sets. Within those Simulink models, we restrict the input problem to a

particular class that is:

• discrete model with

• fixed-step simulation and

• single-rate sampling for each block.

For the Stateflow and Matlab-code blocks, we assume that there

are no infinite loops. Moreover, the bounds of the loops are known apri-

ori. Regarding the semantics issue, we follow the simulation semantics of

Simulink and focus on discrete systems with one global clock. In this

way, we address the first two challenges. About the last challenge, we will

see that our approach is indeed simpler to maintain.

183



CHAPTER 10. SIMULINK TO NUXMV

Figure 10.3: Simulink assertion block

The Simulink assertion block (see Fig. 10.3) is used to specify an in-

variant property in the Simulink model.

10.2 Proposed Solution

In this section, we present our proposed solution: The solution has three

main phases:(i) forward phase, (ii) analysis phase, (iii) backward phase. The

forward phase is about how the translation from Simulink to nuXmv is

performed. In the analysis phase, the translated model is analyzed us-

ing the nuXmv VMT model checker. The backward phase covers how

the result of the analysis is reported back to the Matlab environment.

In particular, the counterexample found by the analysis tool is used to

create a Simulink test case which can be simulated within the Matlab

environment.

The approach uses the Simulink code generation technology, specifi-

cally Simulink Embedded Coder (a black-box compiler), to generate C

code from Simulink models. For translating the C program to nuXmv,

184



10.2. PROPOSED SOLUTION

Figure 10.4: Simulink to SMV via Embedded Coder– detailed flow

we use the Kratos. Kratos [CGM+11] is a software model checker for

sequential and (cooperative) threaded C programs. It is used to parse

the code, apply some code-to-code transformations, and output a nuXmv

program. The nuXmv program is then analyzed using the nuXmv model

checker. When nuXmv finds a counterexample, it can be used to generate

a test case Simulink model. In turn, the test case can then be simulated

using a fixed-step simulation solver provided with the Simulink package.

The complete flow of the approach is shown in Fig. 10.4.

The generated C code from Embedded Coder has a particular form,

shown in Fig. 10.5. The init() function in the C code can be interpreted

as a formula specifying the initial value of the state variables, and similarly,

the step() function in the code can be seen as a formula over current and

next state variables specifying the transition relation of the model. For the

translation, we rely on single static assignment (SSA) transformations as

provided by Kratos. Assertions (i.e., properties) appear in the C code

in the proper location where they have to be interpreted in the original

185



CHAPTER 10. SIMULINK TO NUXMV

int main()

{

init ();

while (1) {

/* read inputs */

step ();

}

}

Figure 10.5: Simulink Embedded Coder: Form of the C code

program. Thus, the SSA will adequately take them into account. The C

code also contains three C structs that specify inputs, outputs, and state

variables. Besides generating the C code, Embedded Coder also pro-

duces a Matlab structure comprising the translation information about

the names and types of the Simulink and the C code. Using that informa-

tion we can go back from the C code level to Simulink level for generating

test cases for the failed assertions.

For generating the C code, Embedded Coder imposes certain

assumptions on the kinds of the Simulink model it can handle.

Most importantly, between the discrete-time and continuous-time mod-

els, it can handle only discrete-time models. Then it can not gen-

erate code for all the Simulink blocks. However, it can manage

most of the discrete blocks. A complete list of blocks that support

code generation is available at http://www.mathworks.com/help/rtw/

ug/supported-products-and-block-usage.html.

Advantages and Disadvantages

The approach can handle a wide-range of Simulink and Stateflow

blocks. Moreover, it can also support custom blocks with Matlab code.

This flow is easy to maintain with the newer releases of Simulink since

186

http://www.mathworks.com/help/rtw/ug/supported-products-and-block-usage.html
http://www.mathworks.com/help/rtw/ug/supported-products-and-block-usage.html


10.3. RELATED WORK

we mainly rely on the Embedded Coder which is also a product of

MathWorks R©. We can also leverage on the optimization provided by Em-

bedded Coder that may help in getting a nuXmv model which is efficient

for the verification process. Another added value is the possibility to use

software model checking techniques for the analysis.

The possible drawbacks of the method are that the translated nuXmv

model does not preserves the hierarchy of the Simulink model and is not

very readable, which may be required for some other activities, e.g., safety

analysis.

10.3 Related Work

Several translations from Simulink have been proposed to different for-

mal languages and verification tools, e.g., the CoCoSim [coc, BGG+17]

framework, BIP [STS+10], LUSTRE [TSCC05], Boogie [RG14],

SL2SX [MF16]. These approaches use a tailor-made compiler for the

translation, and because of that, the support for the kinds (in terms of

the used Simulink blocks) of Simulink models they can translate is lim-

ited. In contrast, we rely on Embedded Coder for compilation, and our

approach supports a wide range of Simulink blocks.

187



CHAPTER 10. SIMULINK TO NUXMV

188



Chapter 11

Verilog to nuXmv

Note. The work presented in this chapter was done as a part of the GRC

Research Project 2012-TJ-2266 WOLF – funded by Semiconductor Re-

search Corporation (SRC).

Verilog models describe the behavior of hardware designs at a high-

level, that are (automatically) synthesized into Register Transfer Level

(RTL) designs. The RTL specification contains the word-level information

of a design. At RTL memories present in a design are either treated as a

whole or expanded into individual elements. RTL designs are synthesized

into gate-level logic designs and further synthesized into physical-level logic

designs. In general, formal verification is performed at the gate level, where

the structural information of the original design is almost lost. There are

successful attempts to perform formal verification directly at RTL, though

these approaches use verification techniques at the Boolean-level.

11.1 Problem Definition

Our goal is to lift the verification of hardware designs from gate level to

RTL, exploiting recent VMT techniques, like those provided by the nuXmv

VMT model checker [CGMT16, CCD+14]. In particular we aim at handling

189



CHAPTER 11. VERILOG TO NUXMV

efficiently designs with memories.

Our contributions are the following: First, we provide a verification

tool-chain, based on Yosys [Wol]– a Verilog synthesizing tool, and on

nuXmv [CCD+14]. We have extended Yosys to generate VMT problems

from Verilog and SystemVerilog assertions, in the nuXmv format, to be

then analyzed with the advanced model checking algorithms provided by

nuXmv. Moreover, the tool-chain allows also to generate VMT problems

in other target languages to experiment with different verification back-

ends.

11.2 Proposed Solution

We use Yosys as a white-box compiler, whose job is to simplify the complex

structures of Verilog language, flatten the hierarchy, and synthesize a

word-level RTL design. Then the simplified design is translated into the

input language of nuXmv.

Tool Architecture

The architecture of Verilog2SMV is depicted in Fig. 11.1, which also

shows Verilog2SMV + nuXmv tool-chain. Verilog2SMV takes as in-

put a Verilog design, written in Verilog IEEE standard 2005 [ver06].

We assume the Verilog design falls in the synthesizable subset of Ver-

ilog [ver05]. We provide two complementary ways to specify the proper-

ties to be checked within the Verilog design. Properties can be specified

within the Verilog model using the SystemVerilog assert statement.

The assert statement can appear in the procedural block or in the mod-

ule body of the Verilog design (see assert at lines 10-11 in the example

in Fig. 11.2). Properties can also be specified with a conventional notation

by means of a single-bit output wire, whose name starts with safety (see

190



11.2. PROPOSED SOLUTION

Figure 11.1: Verilog2SMV architecture and verification tool-chain

e.g., the safety1 wire in Fig. 11.2). The value of this output wire needs

to be driven high when the property is met.

The flow of the translation is the following: We leverage on Yosys to

first flatten the Verilog high-level design, and then to synthesize the

RTL circuit from the result of the flattening process. The RTL circuit is

stored in the Yosys internal representation RTLIL. Yosys follows the IEEE

Verilog standard synthesis semantics [ver05]. The RTL circuit goes into

a new Yosys module that translates the input RTL circuit into a corre-

sponding nuXmv and BTOR [IW15] problem. The translation preserves

all the names of signals, registers, and memories of the original Verilog

design. This makes it easy to interpret back in Verilog, possible coun-

terexamples produced by the back-end model checkers. We explicitly model

the clock as a Boolean input variable. This enables us to faithfully model

flip-flops, memories, and latches, whereas it is not possible using the tra-

ditional translations since they do model clock implicitly. The translation

does not currently handle multiple clocks, multi-dimensional arrays, and

combinational logic loops. Note that the translation module only consid-

ers the parts of the design that are on the circuit path to the specified

properties.

191



CHAPTER 11. VERILOG TO NUXMV

1 module array(input clk, output safety1);

2 reg [7:0] counter;

3 reg [7:0] mem [7:0];

4

5 always @(posedge clk) begin

6 counter <= counter + 8’d1;

7 mem[counter] <= mem[counter] + 8’d1;

8 end

9

10 assert property (!(counter > 8’d0) || mem[counter - 8’d1] == counter - 8’d1);

11

12 assign safety1 = (counter > 8’d0);

13 endmodule

Figure 11.2: Specifying property in Verilog design

The two target verification languages, BTOR and nuXmv, allow to

specify and reason about transition systems. The nuXmv language allows

to express transition systems using all the finite data types available in

NuSMV [CCG+02] (Booleans, enumerative, bounded integers), plus bit-

vectors, reals, integers, and (finite and infinite) arrays, with no restriction

on the specification of the initial values of the variables. On the other hand,

BTOR is limited: 1) it can only deal with bit-vectors and one-dimensional

arrays; 2) registers are implicitly initialized to the zero value, while ar-

rays are uninitialized. In both cases we represent Verilog registers of

width greater than one, with corresponding variables of type bit-vectors

within nuXmv and BTOR. However registers with width one are treated

differently: nuXmv treats them as Boolean, while BTOR treats them as

bit-vectors of width one. Memories in both cases are encoded with arrays

of bit-vectors.

Notice that the conversion into BTOR is not complete in the sense that

it supports zero-initialized registers and uninitialized memories.

Fig. 11.3 shows the nuXmv file generated with Verilog2SMV start-

ing from Verilog module array as described in Fig. 11.2. We see that

192



11.2. PROPOSED SOLUTION

1 MODULE main

2 IVAR

3 "clk" : boolean;

4

5 VAR

6 "counter" : word[8];

7 mem : array word[3] of word[8];

8

9 DEFINE

10 __expr1 := resize(0ub8_11111111, 1);

11 __expr2 := bool(__expr1);

12 __expr3 := "counter"[2:0];

13 __expr4 := READ(mem, __expr3);

14 __expr5 := (__expr4 + 0ub8_00000001);

15 __expr6 := ("clk");

16 __expr7 := (__expr6 & __expr2);

17 __expr8 := WRITE(mem, __expr3, __expr5);

18 __expr9 := ("counter" + 0ub8_00000001);

19 __expr10 := ("clk");

20 __expr11 := (__expr10 ? __expr9 : "counter");

21 __expr12 := next("counter") = __expr11;

22 __expr13 := (case __expr7: __expr8; TRUE: mem; esac);

23 __expr14 := next(mem) = __expr13;

24 __expr15 := (__expr12 & __expr14);

25 __expr16 := ("counter" > 0ub8_00000000);

26 __expr17 := word1(__expr16);

27 __expr18 := (0ud1_0 = __expr17);

28 __expr19 := ("counter" - 0ub8_00000001);

29 __expr20 := __expr19[2:0];

30 __expr21 := READ(mem, __expr20);

31 __expr22 := ("counter" - 0ub8_00000001);

32 __expr23 := (__expr21 = __expr22);

33 __expr24 := (__expr18 | __expr23);

34 __expr25 := bool(0ub1_1);

35 __expr26 := (__expr25 -> __expr24);

36 __expr27 := ("counter" > 0ub8_00000000);

37

38 INIT TRUE;

39 TRANS __expr15;

40 INVARSPEC __expr26;

41 INVARSPEC __expr27;

Figure 11.3: nuXmv translation for the Verilog design shown in Fig. 11.2

193



CHAPTER 11. VERILOG TO NUXMV

the memory mem is retained in the nuXmv file, as an array (declaration

mem : array word[3] of word[8] at line 7). In the translation, we

also introduce explicitly the clock and we model it as an input Boolean

variable (see the clk input variable at line 3). Initial blocks in a Ver-

ilog design converted into INIT constraints in the nuXmv file. In this

example, since there is no initial block, the INIT constraint is simply the

constant TRUE. The assignments to registers and memories are translated

into TRANS constraint. (For details about the nuXmv syntax, we refer the

reader the nuXmv user-manual [BCC+16].) Properties are simply trans-

lated into corresponding INVARSPEC. The assert command in Fig. 11.2 is

translated into the first INVARSPEC, while the property corresponding to

wire satisfy1 is encoded into the second and last INVARSPEC.

As future work, we would like to extend the support to full SystemVer-

ilog properties. A rather ambitious future direction would be extend-

ing Verilog2SMV to convert Verilog designs into threaded software

program. This conversion will help verification (using techniques like

ESST [CNR12]) of high-level Verilog designs.

11.3 Related Work

We mention some tools that can be used to convert Verilog designs

into verification problems. (We omit considering tools which are no more

maintained, like e.g., vl2mv [VSS+96].)

The following tools are publicly available. V3 [WWH] reads Verilog

designs and produces word-level BTOR designs using QuteRTL [YWH12]

as a Verilog frontend. ABC [BM10] has its Verilog frontend, which

transforms the designs into gate-level designs for verification. It cannot

produce word-level MC problems. EBMC [KP] takes Verilog designs

with assertions and produces SMT formulas by applying BMC and/or

194



11.3. RELATED WORK

k-induction. It can also output Boolean-level MC problem in SMV for-

mat. (EBMC is the successor of VCEGAR [JKSC07], which is no more

maintained.) Yosys [Wol] is a freely-available synthesis tool from high-

level Verilog to RTL and gate-level Verilog. A very-recent version

can also produce SMT formulas representing combinatorial circuit de-

signs. Cadence-SMV [McM00] can take Verilog design as input, gener-

ating Boolean-level SMV design (in its publicly-available version). AVER-

ROES [LS14] is a verification tool which takes input Verilog designs and

invariant properties. With the exception of EBMC, they all cannot handle

memories without abstracting or blasting them.

The following tools are not publicly available. AiPG [Sug] is a verifica-

tion tool built on top of Boolector [BB09]. It takes Verilog designs and

assertions as input. It can also produce BTOR designs. Reveal [ALS08]

is a tool for the verification of Verilog designs against assertions. SIXTH-

SENSE [Bau06] is a verification tool by IBM which can handle Verilog

designs.

195



CHAPTER 11. VERILOG TO NUXMV

196



Chapter 12

Implementation and Experimental

Evaluation

12.1 Simulink to nuXmv

12.1.1 Implementation

We have implemented the Simulink to nuXmv approach in Matlab,

and C++. The process of generating C code for a Simulink model and

interacting with Kratos is automated in a Matlab script. The script

also includes Simulink test case model generation for the counterexample

produced by nuXmv/Kratos. We also extended Kratos frontend to

parse the extra details given in the C code, e.g., input variables, state

variables, etc.

12.1.2 Experimental Evaluation

We evaluated our approach on an industrial-level Simulink model

of a twin-engine aircraft simulation called Transport Class Model

(TCM) [Hue11]. The TCM is a publicly available Simulink model with

nonlinear dynamics. Due to the fact the model is nonlinear, it can not be

analyzed using the verification tool Simulink Design Verifier, made

197



CHAPTER 12. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

by MathWorks R©.

The TCM model consists of approximately 5700 Simulink blocks. It

models an aircraft that can be controlled manually (using ailStick and

elevStick) or by autopilot (mode logic) – see Fig. 12.1. The TCM’s au-

topilot controls altitude and maintains desired flight path angle (FPA),

desired heading, and speed. The requirements are coming from pilot

training manuals and the Federal Aviation Regulations for commercial air-

craft. In [BBD+15], these requirements were formalized and verified by

PKind [KT11] model checker. The Simulink model was automatically

converted into a LUSTRE model, which was then fed to PKind for the

verification task. Like Simulink Design Verifier, PKind cannot han-

dle systems with nonlinear dynamics. Therefore, the LUSTRE model was

approximated via linearization of nonlinear dynamics.

As a case study, we try to use our flow on G-120 and G-130 properties

which were verified using compositional reasoning in the paper [BBD+15].

We chose them because they were explained in the paper. Here we describe

G-120 since G-130 is very similar to it.

The assumptions for G-120 are G-180, A1, A2, FPA1:

G-120: The original requirement for G-120 is that guidance shall be ca-

pable of climbing at a defined rate, to be limited by minimum and

maximum engine performance and airspeeds.

G-180: The FPA control shall engage when the altitude control mode is

selected, and when there is no manual pitch or manual roll command

from the stick.

A1: If not in Altitude control mode, the Altitude control module is not

engaged.

A2: If Altitude control module is not engaged, the Altitude control module

will not send commands.

198



12.1.
S
IM

U
L
IN

K
T

O
N
U
X
M
V

1
HeadMode

1
HeadEng2

ailStick
3

ElevStick
4

AltMode
5

FPAMode
6

ATMode

2
ATEng

3
CASCmd

7
AltCmd

8
Altitude

9
CAS

10
CASCmdMCP

HeadMode

ailStick

elevStick

AltMode

FPAMode

ATMode

AltCmd

Altitude

CAS

CASCmdMCP

HeadEng

AltEng

FPAEng

ATEng

CASCmd

MODE LOGIC

4
ElevCmd

FPACmd

AltEng

FpaEng

AltCmd

Alt

thetaDeg

qDeg

GsKts

hdot

VT

Gamma

CAS

ElevStick

ElevCmd

CONTROLS

17
FPACmd

16
gamINS_degf

15
tas_ktsf

14
hdot_fpsf

13
GS_ktsf

12
qbdegf

11
thetadegf

Figure 12.1: TCM: top level

199



C
H

A
P

T
E

R
12.

IM
P

L
E

M
E

N
T

A
T

IO
N

A
N

D
E

X
P

E
R

IM
E

N
T

A
L

E
V

A
L

U
A

T
IO

N

1

HeadMode
1

HeadEng2

ailStick
3

ElevStick
4

AltMode
5

FPAMode
6

ATMode

2

ATEng

3

CASCmd

7

AltCmd

8

Altitude

9

CAS

10

CASCmdMCP

HeadMode

ailStick

elevStick

AltMode

FPAMode

ATMode

AltCmd

Altitude

CAS

CASCmdMCP

HeadEng

AltEng

FPAEng

ATEng

CASCmd

MODE	LOGIC

4

ElevCmd

FPACmd

AltEng

FpaEng

AltCmd

Alt

thetaDeg_orig

qDeg

GsKts

hdot

VT

Gamma

CAS

ElevStick

ElevCmd

CONTROLS

17

FPACmd

16

gamINS_degf

15

tas_ktsf

14

hdot_fpsf

13

GS_ktsf

12

qbdegf

11

thetadegf

Convert

Data	Type	Conversion

In1

assumeALT1

AssertionALT1

NOT

Logical
Operator

==	0

Compare
To	Zero

NOT

Logical
Operator1

In1

assumeG180_2

In1

assumeG180_3

In1

assumeG180_4

AssertionG180

Figure 12.2: TCM with assumes and assertions – top level

200



12.1.
S
IM

U
L
IN

K
T

O
N
U
X
M
VFigure 12.3: TCM with assumes and assertions – controls component

201



CHAPTER 12. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

The properties were only available in the LUSTRE program. We have

added them to the Simulink model using assume blocks (our custom

Simulink block for specifying assumptions) and assert blocks (a built-

in Simulink block), see Fig. 12.2 and Fig. 12.3 (added blocks are high-

lighted). We noticed that there was a type mismatch between the output

port FPAEng of Mode Logic subsystem and the input port FpaEng of

Controls subsystem. We resolved this issue by adding a Simulink data

type converter block.

We ran our Simulink to nuXmv verification flow on the Simulink

model with properties (see Fig. 12.2 and Fig. 12.3). We were able to verify

them in less than 10 secs.

Remark 8. While adding the properties in the Simulink model, we found

an assumption to be inconsistent. In fact, we reported this to the authors

of the original paper, and they acknowledged our findings and provided us

the corrected assumptions.

Remark 9. It is worth to remark that we did not approximate the model.

Instead, we let nuXmv to handle the nonlinear dynamics of the model, via

incremental linearization approach as presented in Chapter 8. Moreover,

the overall process was done without human intervention.

12.2 Verilog to nuXmv

12.2.1 Implementation

Verilog2SMVis built on top of Yosys [Wol] and is written in C++. The

call to nuXmv is done via a bash script.

202



12.2. VERILOG TO NUXMV

nuXmv Language Extensions

We have extended the language of nuXmv for expressing bounded and

unbounded arrays types, read and write operators over arrays, and con-

structing constant arrays. For dealing with memories, we need bounded

arrays. Nevertheless, we explain the syntax for both bounded and un-

bounded arrays. For the complete syntax of the nuXmv language, we

suggest to look at [BCC+16].

Array Types. Arrays types are multi-sorted: there is a sort for index and

a sort for elements of arrays. The index type of bounded arrays is spec-

ified by a word (bit-vector) of fixed length in nuXmv, whereas the type

of unbounded arrays is specified using the integer type in nuXmv. For

example:

array word[5] of unsigned word[3];

array integer of unsigned word[3];

The first is a bounded array with 25 elements of type unsigned word[3].

The second is an unbounded array with elements of type unsigned word[3].

Read Operator. The read operator ’READ’ extracts one element of an

array at particular index. The first argument of the operator must be an

expression of type either word or integer, and the type of second argument

expression must be same as of the index type of the array expression in

the first argument. The signature of the READ operator is:

READ : array word[N] of subtype * word[N] → subtype

: array integer of subtype * integer → subtype

Write Operator. The write operator ’WRITE’ updates one element at a

particular index of an array and returns the updated array as a new array.

203



CHAPTER 12. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

The first argument of the operator must be an expression of type either

word or integer. The type of the second and third argument expressions

must be same as of the index type and element type of the array expression

in the first argument. The signature of the WRITE operator is:

WRITE : array word[N] of subtype * word[N] * subtype

→ array word[N] of subtype

: array integer of subtype * integer * subtype

→ array integer of subtype

Constant Array. The constant array ’CONSTARRAY’ is a special constructor

to create an array of given type having elements set to a uniform given

value. For example, a constant array CONSTARRAY(typeof(a), 0) (sup-

pose that a is of type array integer of integer), means an unbounded

array of type array integer of integer with all elements value set to

integer 0.

nuXmv VMT Extensions

We have extended the BMC, k-induction, and IC3ia procedures inside

nuXmv for dealing with the theory of arrays.

12.2.2 Experimental Evaluation

In this section we describe an experimental evaluation we carried out to

show the effectiveness of the Verilog2SMV + nuXmv tool-chain. We

conducted an experimental analysis on real-world Verilog verification

benchmarks with registers and memories. We compare our tool-chain us-

ing different back-end verification algorithms provided by nuXmv against

other related tools.

204



12.2. VERILOG TO NUXMV

Setup of the experimental evaluation

We have run our experiments on a cluster of 64-bit Linux machines with

2.7 GHz Intel Xeon X5650 CPUs, with a memory limit of 4GB and a time

limit of 3600 seconds.

Benchmarks. We have considered a set of benchmark problems, Verilog

files and invariant properties files, from the VIS [Som] and VCEGAR [vce]

benchmark suites. The collection includes 42 problems with memories

and registers (40 from VIS and 2 from VCEGAR) and 44 problems with

registers only (14 from VIS and 29 from VCEGAR), totalling 86 problems.

Other Tools. We have compared our tool-chain against v3, AVERROES,

and EBMC on the collected benchmarks. We have also used the very-

recently released version 4.2 of EBMC. Unfortunately, we can only show

results against EBMC because v3 and AVERROES either were not able to

process most of the Verilog designs we collected, or they crashed without

producing results.

Configurations. For benchmarks that contain both memories and regis-

ters, we have considered the following verification algorithms offered by

nuXmv:

a) nuxmv-k-ind, SMT-based k-induction/BMC ;

b) nuxmv-bmc, SMT-based BMC ;

c) nuxmv-ic3-ia, SMT-based IC3 with implicit abstraction [CGMT16].

For registers-only benchmarks, besides a), b), and c), we have also con-

sidered:

d) nuxmv-ic3 SAT-based IC3 [Bra11].

205



CHAPTER 12. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

 5

 10

 15

 20

 25

 30

 35

 0.1  1  10  100  1000

#
 o

f 
in

s
ta

n
c
e
s

time

ebmc-100

ebmc-1000

ebmc42-100

ebmc42-1000

nuxmv-ic3-ia

nuxmv-k-ind

nuxmv-bmc

nuxmv-best

Figure 12.4: Accumulated plot for benchmarks with memories and registers

For each nuXmv configuration, the bound is 1000. For EBMC we use

the the following configurations:

e) ebmc-100, k-induction/BMC with bound 100;

f) ebmc-1000, k-induction/BMC with bound 1000;

g) ebmc42-100, EMBC 4.2 using k-induction/BMC with bound 100;

h) ebmc42-1000, EBMC 4.2 using k-induction/BMC with bound 1000.

Results

The results of the experiments are shown in form of accumulated plots,

where on the x-axis we have the accumulated solving time and on the y-

axis we have the number of solved instances. Fig. 12.4 shows the results

206



12.2. VERILOG TO NUXMV

 5

 10

 15

 20

 25

 30

 35

 40

 0.1  1  10  100  1000  10000

#
 o

f 
in

s
ta

n
c
e
s

time

ebmc-100

ebmc-1000

ebmc42-100

ebmc42-1000

nuxmv-ic3

nuxmv-ic3-ia

nuxmv-k-ind

nuxmv-bmc

nuxmv-best

Figure 12.5: Accumulated plot for benchmarks with registers only

for the 42 benchmarks with memories and registers; Fig. 12.5 shows the

results for the 44 benchmarks with registers only. In the plots, we also

show nuxmv-best which is virtual best configuration for nuXmv.

The results clearly show that our tool-chain is performing better than

EBMC, on the selected benchmarks. In particular, we see that on the

benchmarks with memories and registers, nuxmv-k-ind has solved 33

benchmarks (22 safe, 11 unsafe), instead nuxmv-ic3-ia has been able to

solve 28 benchmarks (25 safe, 3 unsafe). ebmc42-100 has solved only 19

benchmarks (9 safe, 10 unsafe). We notice that nuxmv-ic3-ia has solved

more safe instances than nuxmv-k-ind, probably since the former uses ab-

straction. However nuxmv-ic3-ia has solved less unsafe instances than

nuxmv-k-ind, probably due to the limited support for array abstraction

207



CHAPTER 12. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

refinement in nuXmv. We skip the discussion for older version of EBMC,

i.e., ebmc-* configurations.

For the benchmarks with registers only, nuxmv-ic3-ia, nuxmv-ic3, and

nuxmv-k-ind are much closer. Indeed the first has solved all the 44 bench-

marks (35 safe, 9 unsafe), the second has solved 43 benchmark (34 safe,

9 unsafe), and the last one has solved 41 benchmarks (32 safe, 9 unsafe).

Interestingly nuxmv-ic3-ia, which is an SMT-based IC3, has shown better

performance than SAT-based IC3 nuxmv-ic3. ebmc42-100 has only solved

31 benchmarks (26 safe, 5 unsafe).

We conjecture that EBMC is slower than the nuXmv-based tools be-

cause it is not exploiting incrementality while solving.

Importantly, whenever terminating, on the latter benchmarks all tools

always agree on the result, whilst on the former ones all nuxmv-* and

ebmc-* always agree, whilst ebmc42-* disagrees with both nuxmv-* and

ebmc-* on two instances.

We remark that, Verilog2SMV has the ability to generate bench-

marks in different formats. In particular, It can generate Boolean-level

benchmarks in AIGER [aig] format either using synthebtor tool, from the

Boolector distribution, or using the converter in AIGER format built-in in

nuXmv. This will enable for generating benchmarks and experimenting

with any model checker from the hardware model checking competition.

208



Summary

In this part, we have worked towards bridging the gap between the de-

sign tools and the verification tools: we have integrated Simulink and

Verilog with nuXmv via a compilation-based approach. The integra-

tion allowed us to develop workflows for verifying Simulink and Verilog

designs with the state-of-the-art techniques provided by nuXmv.

We have presented the implementation details and evaluated our ap-

proaches on a Simulink case study and a set of Verilog benchmarks.

In fact, the Simulink design contains nonlinear dynamics, and Simulink

Design Verifier (the main verification tool for Simulink) does not han-

dle it. As results of the proposed workflow and our contributions presented

in part III for the verification of nonlinear transition systems, we can suc-

cessfully verify invariant properties of the Simulink design. In the case

of Verilog to nuXmv, the translation converts Verilog designs with

assertions into RTL VMT problems, while fully treating memories. The

effectiveness of the Verilog to nuXmv verification workflow has been

demonstrated by an evaluation on a collection of Verilog benchmarks.

Our work can also provide a way to generate verification benchmarks

from real-world Simulink and Verilog designs. In particular, for the

case of Verilog, benchmarks at a higher level of abstraction – retaining

registers and memories – can be generated, that can assist in the advance-

ment of the hardware verification research which mostly focuses at the

Boolean level due to the unavailability of word-level benchmarks.

209





Chapter 13

Thesis Conclusions

Formal verification has become extremely important for analyzing hard-

ware and software systems. A prominent direction in formal verification

is based on Satisfiability Modulo Theories (SMT), which is the problem

of checking satisfiability of first-order formulae with respect to some back-

ground theories. Verification Modulo Theories (VMT) is the problem of

analyzing systems described using SMT formulae. Based on the recent

improvements in SMT technologies, effective VMT techniques have been

developed for linear arithmetic. However, many real-world industrial de-

signs (e.g., aerospace, automotive) also require modeling as systems over

nonlinear arithmetic and transcendental functions, for which the VMT and

SMT problems have received little attention.

In this thesis, we have addressed the SMT and VMT problems with

respect to the theories of nonlinear arithmetic and transcendental func-

tions. We have significantly improved the state of the art on the problems.

Moreover, we have also contributed to the integration of the state-of-the-

art nuXmv VMT model checker with two design tools – Simulink and

Verilog. Our work provides the first automatic verification method for

checking invariant properties of discrete-time Simulink designs.

We have proposed incremental linearization as a general framework

211



CHAPTER 13. THESIS CONCLUSIONS

for automated reasoning about nonlinear polynomials and transcenden-

tal functions such as exponentiation and trigonometric functions. We have

implemented it inside the MathSAT SMT solver and the nuXmv VMT

model checker. The experimental results show the merits of incremental

linearization. The technique is surprisingly effective in SMT, even com-

pared to other complete (when available) and more mature approaches. In

VMT, incremental linearization significantly outperforms its competitors

based on interval propagation.

The effectiveness of incremental linearization is possibly explained with

the following insights. On the one hand, in contrast to linear arithmetic,

nonlinear arithmetic (and also the extension with transcendental functions)

is a hard-to-solve theory: in practice, most available complete solvers rely

on expensive solvers; we try to avoid nonlinear reasoning, trading it for

linear reasoning. On the other hand, proving properties of practical sys-

tems may not require the full power of nonlinear solving. In fact, some

systems are “mostly-linear” (i.e., nonlinear constraints are associated to

a tiny part of the system), an example being the Transport Class Model

(TCM) for aircraft simulation from the Simulink model library [Hue11].

Furthermore, even a system with significant nonlinear dynamics may admit

a piecewise-linear invariant that is strong enough to prove the property.

Overall, incremental linearization is a general and relatively simple idea

that supports approaches to SMT and VMT, and can successfully tackle

many practical problems. In fact, the approach has also been (indepen-

dently) implemented in the CVC4 SMT solver for handling nonlinear poly-

nomials, as presented in the paper [RTJB17]. Based on personal commu-

nication, also the extension to support transcendental functions via incre-

mental linearization is underway.

212



13.1. FUTURE DIRECTIONS

13.1 Future Directions

This work opens a number of research directions.

In the SMT case, incremental linearization is clearly an incomplete tech-

nique in general for nonlinear problems, nevertheless, it would be inter-

esting to identify subclasses of nonlinear problems for which incremental

linearization is (theoretically) complete. The experimental results show a

very good performance of incremental linearization on the real-world prob-

lems. Despite the success, we think there is a great potential for future

work in the development of heuristics and preprocessing techniques (e.g.,

factorization techniques for polynomials), and the use of an additional set

of the linearization rules (e.g., monomial- and polynomial-level axiomati-

zation, and native handling of transcendental functions other than sin and

exp). To further improve efficieny, we would like to investigate the inte-

gration of incremental linearization with complementary techniques, such

as interval constraint propagation or Cylindrical Algebraic Decomposition

(CAD) – a more powerful technique but also more expensive. Moreover, at

the moment we do not use information from a failed attempt of the satis-

fiability detection heuristic. It would be interesting to study the impact of

such information, which for instance can be extracted using unsatisfiable

cores. For improving the performance on satisfiable instances, a possible

direction is to integrate the work presented in [FOSV17], which provides a

sufficient criteria for satisfiability without necessarily producing a model.

Since most state-of-the-art SMT solvers for UF and LA can compute

interpolants [CGS10], extending incremental linearization to compute in-

terpolants would be an exciting direction. Interpolants are extensively

applied in verification of finite- and infinite-state transition systems. Cur-

rently, the interpolant computation for nonlinear arithmetic and transcen-

dental functions is done using interval-based methods. It would be inter-

213



CHAPTER 13. THESIS CONCLUSIONS

esting to compare the strength of the interpolants produced by the current

approaches against the ones using incremental linearization. Another ap-

plication of incremental linearization would be in the case of Optimization

Modulo Theories (OMT) [CFG+10, ST15] problems w.r.t. NRA, NT A,

and NIA.

For the VMT case, an immediate thing to do is the evaluation of incre-

mental linearization on the NIA benchmarks. Similar to the case of SMT,

studying heuristics applied and exploring various options of the the refine-

ment is an important direction to follow. Moreover, a significant step is an

extension beyond invariant checking, to deal with full LTL specifications

over nonlinear transition systems. We conjecture that the computation

of limit values for series may help to deal with transition systems deriving

from discrete-step controllers. Another interesting direction is an extension

of incremental linearization to deal with hybrid automata featuring poly-

nomial and transcendental dynamics. Exploring incremental linearization

for proving termination of software program exhibiting nonlinear behavior

is another possibility.

In the future, for the Simulink to nuXmv translation, we plan to inves-

tigate translation options that can support a wide range of Simulink de-

signs as well as preserve the hierarchy of the design. This direction can open

up the possibility to apply compositional reasoning using OCRA [CDT13].

214



Bibliography

[Ack54] W. Ackermann. Solvable Cases of the Decision Problem. Janua

linguarum: Series maior. North-Holland Publishing Company,

1954.

[ACKS02] Gilles Audemard, Alessandro Cimatti, Artur Kornilowicz, and

Roberto Sebastiani. Bounded model checking for timed sys-

tems. In FORTE, volume 2529 of LNCS, pages 243–259.

Springer, 2002.

[AGMW13] Xavier Allamigeon, Stéphane Gaubert, Victor Magron, and

Benjamin Werner. Certification of inequalities involving tran-

scendental functions: combining sdp and max-plus approxi-

mation. In Control Conference (ECC), 2013 European, pages

2244–2250. IEEE, 2013.

[aig] http://fmv.jku.at/aiger/.

[ALS08] Zaher S Andraus, Mark H Liffiton, and Karem A Sakallah. Re-

veal: A formal verification tool for Verilog designs. In LPAR.

Springer, 2008.

[alt] AltaRica. https://altarica.labri.fr.

[AP10] Behzad Akbarpour and Lawrence C. Paulson. MetiTarski: An

automatic theorem prover for real-valued special functions. J.

Autom. Reasoning, 44(3):175–205, 2010.

215

http://fmv.jku.at/aiger/
https://altarica.labri.fr


BIBLIOGRAPHY

[APGR99] André Arnold, Gérald Point, Alain Griffault, and Antoine

Rauzy. The AltaRica formalism for describing concurrent sys-

tems. Fundam. Inform., 40(2-3):109–124, 1999.

[AR12] Alessandro Armando and Silvio Ranise. Scalable automated

symbolic analysis of administrative role-based access control

policies by SMT solving. Journal of Computer Security,

20(4):309–352, 2012.

[ARTW16] Alessandro Armando, Silvio Ranise, Riccardo Traverso, and

Konrad S. Wrona. Smt-based enforcement and analysis of

NATO content-based protection and release policies. In

ABAC@CODASPY, pages 35–46. ACM, 2016.

[aut] AutoFocus3 (AF3). https://af3.fortiss.org.

[Bau06] Jason R Baumgartner. Semi-formal verification at IBM. In

HLDVT. IEEE, 2006.

[BB09] Robert Brummayer and Armin Biere. Boolector: An efficient

SMT solver for bit-vectors and arrays. In TACAS, TACAS

’09. Springer, 2009.

[BBB13] J.L. Berggren, J. Borwein, and P. Borwein. Pi: A Source Book.

Springer New York, 2013.

[BBC+06] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti,

Tommi A. Junttila, Silvio Ranise, Peter van Rossum, and

Roberto Sebastiani. Efficient theory combination via boolean

search. Inf. Comput., 204(10):1493–1525, 2006.

[BBC16] Benjamin Bittner, Marco Bozzano, and Alessandro Cimatti.

Automated synthesis of timed failure propagation graphs. In

IJCAI, pages 972–978. IJCAI/AAAI Press, 2016.

216

https://af3.fortiss.org


BIBLIOGRAPHY

[BBD+15] Guillaume Brat, David H. Bushnell, Misty Davies, Dimitra

Giannakopoulou, Falk Howar, and Temesghen Kahsai. Verify-

ing the safety of a flight-critical system. In FM, volume 9109

of LNCS, pages 308–324. Springer, 2015.

[BBJ15] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson.

HYST: a source transformation and translation tool for hybrid

automaton models. In HSCC, pages 128–133. ACM, 2015.

[BBL+17] Cristina Borralleras, Marc Brockschmidt, Daniel Larraz, Al-

bert Oliveras, Enric Rodŕıguez-Carbonell, and Albert Ru-

bio. Proving termination through conditional termination. In

TACAS 2017, Proceedings, Part I, volume 10205 of LNCS,

pages 99–117, 2017.

[BBW14] Johannes Birgmeier, Aaron R. Bradley, and Georg Weis-

senbacher. Counterexample to induction-guided abstraction-

refinement (CTIGAR). In CAV, volume 8559 of LNCS, pages

831–848. Springer, 2014.

[BCC+16] Marco Bozzano, Roberto Cavada, Alessandro Cimatti,

Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, An-

drea Micheli, Sergio Mover, Marco Roveri, and Stefano

Tonetta. nuXmv 1.1.1 user manual. https://es.fbk.eu/

tools/nuxmv/downloads/nuxmv-user-manual.pdf, 2016.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and

Yunshan Zhu. Symbolic Model Checking Without BDDs.

In TACAS, TACAS ’99, pages 193–207, London, UK, 1999.

Springer-Verlag.

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana

Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds, and

217

https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf
https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf


BIBLIOGRAPHY

Cesare Tinelli. CVC4. In CAV, volume 6806 of LNCS, pages

171–177. Springer, 2011.

[BCK+11] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen,

Viet Yen Nguyen, Thomas Noll, and Marco Roveri. Safety,

dependability and performance analysis of extended AADL

models. Comput. J., 54(5):754–775, 2011.

[BCR+09] Marco Bozzano, Alessandro Cimatti, Marco Roveri, Joost-

Pieter Katoen, Viet Yen Nguyen, and Thomas Noll. Code-

sign of dependable systems: A component-based modeling lan-

guage. In MEMOCODE, pages 121–130. IEEE, 2009.

[BD07] Christopher W. Brown and James H. Davenport. The com-

plexity of quantifier elimination and cylindrical algebraic de-

composition. In ISSAC, pages 54–60. ACM, 2007.

[BDG+13] Martin Brain, Vijay D’Silva, Alberto Griggio, Leopold Haller,

and Daniel Kroening. Interpolation-based verification of

floating-point programs with abstract CDCL. In SAS, volume

7935 of LNCS, pages 412–432. Springer, 2013.

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli.

The Satisfiability Modulo Theories Library (SMT-LIB).

www.SMT-LIB.org, 2016.

[BG06] Frédéric Benhamou and Laurent Granvilliers. Continuous and

interval constraints. In Handbook of Constraint Programming,

volume 2 of Foundations of Artificial Intelligence, pages 571–

603. Elsevier, 2006.

[BGG+17] Hamza Bourbouh, Pierre-Löıc Garoche, Christophe Garion,

Arie Gurfinkel, Temesghen Kahsai, and Xavier Thirioux. Au-

218



BIBLIOGRAPHY

tomated analysis of stateflow models. In LPAR, volume 46 of

EPiC Series in Computing, pages 144–161. EasyChair, 2017.

[BLO+12] Cristina Borralleras, Salvador Lucas, Albert Oliveras, Enric

Rodŕıguez-Carbonell, and Albert Rubio. Sat modulo linear

arithmetic for solving polynomial constraints. J. Autom. Rea-

son., 48(1):107–131, January 2012.

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Compu-

tation: Decision Procedures with Applications to Verification.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[BM10] Robert K. Brayton and Alan Mishchenko. ABC: an academic

industrial-strength verification tool. In CAV, volume 6174 of

Lecture Notes in Computer Science, pages 24–40. Springer,

2010.

[BMS06] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s

decidable about arrays? In Proceedings of the 7th Interna-

tional Conference on Verification, Model Checking, and Ab-

stract Interpretation, VMCAI’06, pages 427–442, Berlin, Hei-

delberg, 2006. Springer-Verlag.

[BODF09] Thomas Bouton, Diego Caminha Barbosa De Oliveira, David

Déharbe, and Pascal Fontaine. veriT: An open, trustable and

efficient SMT-solver. In CADE-22, volume 5663 of LNCS,

pages 151–156. Springer, 2009.

[Bra11] Aaron R. Bradley. SAT-based model checking without un-

rolling. In VMCAI, volume 6538 of LNCS, pages 70–87.

Springer, 2011.

219



BIBLIOGRAPHY

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and

Cesare Tinelli. Satisfiability modulo theories. In Handbook of

Satisfiability, volume 185 of Frontiers in Artificial Intelligence

and Applications, pages 825–885. IOS Press, 2009.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimiza-

tion. Cambridge University Press, New York, NY, USA, 2004.

[CÁ11] Florian Corzilius and Erika Ábrahám. Virtual substitution

for smt-solving. In FCT, volume 6914 of Lecture Notes in

Computer Science, pages 360–371. Springer, 2011.

[CCD+14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Al-

berto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio

Mover, Marco Roveri, and Stefano Tonetta. The nuXmv sym-

bolic model checker. In CAV, volume 8559 of LNCS, pages

334–342. Springer, 2014.

[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia,

Fausto Giunchiglia, Marco Pistore, Marco Roveri, Roberto Se-

bastiani, and Armando Tacchella. NuSMV 2: An opensource

tool for symbolic model checking. In CAV 2002, Proceedings,

pages 359–364, 2002.

[CDT13] Alessandro Cimatti, Michele Dorigatti, and Stefano Tonetta.

OCRA: A tool for checking the refinement of temporal con-

tracts. In IEEE/ACM ASE 2013, pages 702–705, 2013.

[CFG+10] Alessandro Cimatti, Anders Franzén, Alberto Griggio,

Roberto Sebastiani, and Cristian Stenico. Satisfiability mod-

ulo the theory of costs: Foundations and applications. In

TACAS 2010, March 20-28, 2010. Proceedings, volume 6015

of LNCS, pages 99–113. Springer, 2010.

220



BIBLIOGRAPHY

[CFR14] Paula Chocron, Pascal Fontaine, and Christophe Ringeissen.

A gentle non-disjoint combination of satisfiability procedures.

In IJCAR, volume 8562 of Lecture Notes in Computer Science,

pages 122–136. Springer, 2014.

[CG12] Alessandro Cimatti and Alberto Griggio. Software model

checking via IC3. In CAV, volume 7358 of Lecture Notes in

Computer Science, pages 277–293. Springer, 2012.

[CGI+17a] Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco

Roveri, and Roberto Sebastiani. Invariant checking of NRA

transition systems via incremental reduction to LRA with

EUF. In TACAS, volume 10205 of LNCS, pages 58–75, 2017.

[CGI+17b] Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco

Roveri, and Roberto Sebastiani. Satisfiability modulo tran-

scendental functions via incremental linearization. In CADE

26, volume 10395 of LNCS, pages 95–113. Springer, 2017.

[CGI+18] Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco

Roveri, and Roberto Sebastiani. Experimenting on solving

nonlinear integer arithmetic with incremental linearization.

In SAT, LNCS. Springer, 2018. To appear. Available at

https://es.fbk.eu/people/irfan/papers/sat18.pdf.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,

and Helmut Veith. Counterexample-guided abstraction re-

finement. In Computer Aided Verification, 12th International

Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000,

Proceedings, pages 154–169, 2000.

[CGKT16] Adrien Champion, Arie Gurfinkel, Temesghen Kahsai, and Ce-

sare Tinelli. Cocospec: A mode-aware contract language for

221

https://es.fbk.eu/people/irfan/papers/sat18.pdf


BIBLIOGRAPHY

reactive systems. In SEFM, volume 9763 of LNCS, pages 347–

366. Springer, 2016.

[CGM+11] Alessandro Cimatti, Alberto Griggio, Andrea Micheli, Iman

Narasamdya, and Marco Roveri. Kratos - A software model

checker for SystemC. In CAV, July 14-20, 2011. Proceedings,

pages 310–316, 2011.

[CGMT15] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Ste-

fano Tonetta. HyComp: An SMT-based model checker for

hybrid systems. In TACAS, volume 9035 of LNCS, pages 52–

67. Springer, 2015.

[CGMT16] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Ste-

fano Tonetta. Infinite-state invariant checking with IC3 and

predicate abstraction. Formal Methods in System Design,

49(3):190–218, 2016.

[CGS10] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani.

Efficient generation of Craig interpolants in satisfiability mod-

ulo theories. ACM Trans. Comput. Log., 12(1):7:1–7:54, 2010.

[CGS11] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani.

Computing small unsatisfiable cores in SAT modulo theories.

Journal of Artificial Intelligence Research, JAIR, 40:701–728,

April 2011.

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaaf-

sma, and Roberto Sebastiani. The MathSAT5 SMT Solver. In

TACAS, volume 7795 of LNCS, pages 93–107. Springer, 2013.

[che] CHESS Project. http://www.chess-project.org.

222

http://www.chess-project.org


BIBLIOGRAPHY

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan

Schupp, and Erika Ábrahám. SMT-RAT: an open source C++

toolbox for strategic and parallel SMT solving. In SAT, volume

9340 of LNCS, pages 360–368. Springer, 2015.

[CLJÁ12] Florian Corzilius, Ulrich Loup, Sebastian Junges, and Erika

Ábrahám. SMT-RAT: an smt-compliant nonlinear real arith-

metic toolbox - (tool presentation). In SAT, volume 7317 of

Lecture Notes in Computer Science, pages 442–448. Springer,

2012.

[CLP+16] Gianpiero Cabodi, Carmelo Loiacono, Marco Palena, Paolo

Pasini, Denis Patti, Stefano Quer, Danilo Vendraminetto,

Armin Biere, and Keijo Heljanko. Hardware model checking

competition 2014: an analysis and comparison of solvers and

benchmarks. Journal on Satisfiability, Boolean Modeling and

Computation, 9:135–172, 2016.

[CMR15] Alessandro Cimatti, Andrea Micheli, and Marco Roveri.

Strong temporal planning with uncontrollable durations: A

state-space approach. In AAAI, pages 3254–3260. AAAI Press,

2015.

[CMR16] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Dy-

namic controllability of disjunctive temporal networks: Vali-

dation and synthesis of executable strategies. In AAAI, pages

3116–3122. AAAI Press, 2016.

[CMR17] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Vali-

dating domains and plans for temporal planning via encoding

into infinite-state linear temporal logic. In AAAI, pages 3547–

3554. AAAI Press, 2017.

223



BIBLIOGRAPHY

[CMS16] Alessandro Cimatti, Sergio Mover, and Mirko Sessa. From

electrical switched networks to hybrid automata. In FM, vol-

ume 9995 of LNCS, pages 164–181. Springer, 2016.

[CMST16] Adrien Champion, Alain Mebsout, Christoph Sticksel, and Ce-

sare Tinelli. The kind 2 model checker. In CAV 2016, Pro-

ceedings, Part II, pages 510–517, 2016.

[CMT12] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. A

quantifier-free SMT encoding of non-linear hybrid automata.

In FMCAD, pages 187–195. IEEE, 2012.

[CMT13] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. Smt-

based scenario verification for hybrid systems. Formal Methods

in System Design, 42(1):46–66, 2013.

[CNR12] Alessandro Cimatti, Iman Narasamdya, and Marco Roveri.

Software model checking with explicit scheduler and symbolic

threads. Logical Methods in Computer Science, 8(2), 2012.

[coc] CoCoSim. https://github.com/coco-team/cocoSim.

[Col74] George E. Collins. Quantifier elimination for real closed

fields by cylindrical algebraic decomposition-preliminary re-

port. ACM SIGSAM Bulletin, 8(3):80–90, 1974.

[Coo71] Stephen A. Cook. The complexity of theorem-proving proce-

dures. In STOC, pages 151–158. ACM, 1971.

[CPHP87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John

Plaice. Lustre: A declarative language for programming syn-

chronous systems. In ACM POPL, 1987, pages 178–188, 1987.

224

https://github.com/coco-team/cocoSim


BIBLIOGRAPHY

[CSW15] David R. Cok, Aaron Stump, and Tjark Weber. The 2013 eval-

uation of SMT-COMP and SMT-LIB. J. Autom. Reasoning,

55(1):61–90, 2015.

[dDLM11] Florent de Dinechin, Christoph Quirin Lauter, and Guillaume

Melquiond. Certifying the floating-point implementation of an

elementary function using Gappa. IEEE Trans. Computers,

60(2):242–253, 2011.

[DdM06] Bruno Dutertre and Leonardo Mendonça de Moura. A fast

linear-arithmetic solver for DPLL(T). In CAV 2006, Proceed-

ings, volume 4144 of LNCS, pages 81–94. Springer, 2006.

[DE17] James H. Davenport and Matthew England. The potential and

challenges of CAD with equational constraints for SC-Square.

In MACIS 2017, Proceedings, volume 10693 of LNCS, pages

280–285. Springer, 2017.

[DH88] James H. Davenport and Joos Heintz. Real quantifier elimina-

tion is doubly exponential. J. Symb. Comput., 5(1/2):29–35,

1988.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland.

A machine program for theorem-proving. Commun. ACM,

5(7):394–397, 1962.

[dMB08a] Leonardo Mendonça de Moura and Nikolaj Bjørner. Model-

based theory combination. Electr. Notes Theor. Comput. Sci.,

198(2):37–49, 2008.

[dMB08b] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an

efficient SMT solver. In TACAS, volume 4963 of LNCS, pages

337–340. Springer, 2008.

225



BIBLIOGRAPHY

[dMJ13] Leonardo Mendonça de Moura and Dejan Jovanovic. A model-

constructing satisfiability calculus. In VMCAI, volume 7737

of LNCS, pages 1–12. Springer, 2013.

[dMRS02] Leonardo Mendonça de Moura, Harald Rueß, and Maria Sorea.

Lazy theorem proving for bounded model checking over infinite

domains. In CADE, volume 2392 of Lecture Notes in Computer

Science, pages 438–455. Springer, 2002.

[dMRS03] Leonardo Mendonça de Moura, Harald Rueß, and Maria Sorea.

Bounded model checking and induction: From refutation to

verification (extended abstract, category A). In CAV, volume

2725 of LNCS, pages 14–26. Springer, 2003.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for

quantification theory. J. ACM, 7(3):201–215, 1960.

[Dut14] Bruno Dutertre. Yices 2.2. In CAV, volume 8559 of LNCS,

pages 737–744. Springer, 2014.

[EKK+11] Andreas Eggers, Evgeny Kruglov, Stefan Kupferschmid,

Karsten Scheibler, Tino Teige, and Christoph Weidenbach. Su-

perposition modulo non-linear arithmetic. In FroCoS, volume

6989 of LNCS, pages 119–134. Springer, 2011.

[EMB11] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Ef-

ficient implementation of property directed reachability. In

FMCAD, pages 125–134. FMCAD Inc., 2011.

[ES03a] Niklas Eén and Niklas Sörensson. An extensible sat-solver.

In SAT, volume 2919 of Lecture Notes in Computer Science,

pages 502–518. Springer, 2003.

226



BIBLIOGRAPHY

[ES03b] Niklas Eén and Niklas Sörensson. Temporal induction by in-

cremental SAT solving. Electr. Notes Theor. Comput. Sci.,

89(4):543–560, 2003.

[FCN+10] Anders Franzén, Alessandro Cimatti, Alexander Nadel,

Roberto Sebastiani, and Jonathan Shalev. Applying SMT in

symbolic execution of microcode. In FMCAD, pages 121–128.

IEEE, 2010.

[FGM+07] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter

Schneider-Kamp, René Thiemann, and Harald Zankl. SAT

solving for termination analysis with polynomial interpreta-

tions. In SAT 2007, Proceedings, volume 4501 of LNCS, pages

340–354. Springer, 2007.

[FHT+07] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan,

and Tobias Schubert. Efficient solving of large non-linear

arithmetic constraint systems with complex boolean structure.

JSAT, 1(3-4):209–236, 2007.

[FLVC04] Peter H. Feiler, Bruce A. Lewis, Steve Vestal, and Edward

Colbert. An overview of the SAE architecture analysis &

design language (AADL) standard: A basis for model-based

architecture-driven embedded systems engineering. In IFIP-

WADL, volume 176 of IFIP, pages 3–15. Springer, 2004.

[Fon09] Pascal Fontaine. Combinations of theories for decidable frag-

ments of first-order logic. In FroCoS, volume 5749 of Lecture

Notes in Computer Science, pages 263–278. Springer, 2009.

[FOSV17] Pascal Fontaine, Mizuhito Ogawa, Thomas Sturm, and Xuan-

Tung Vu. Subtropical satisfiability. In FroCoS, volume 10483

of LNCS, pages 189–206. Springer, 2017.

227



BIBLIOGRAPHY

[GAC12] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. δ-

complete decision procedures for satisfiability over the reals.

In IJCAR, volume 7364 of LNCS, pages 286–300. Springer,

2012.

[Gac16] A Gacek. JKind–an infinite-state model checker for safety

properties in lustre, 2016.

[GB06] Laurent Granvilliers and Frédéric Benhamou. Algorithm 852:

Realpaver: an interval solver using constraint satisfaction

techniques. ACM Trans. Math. Softw., 32(1):138–156, 2006.

[GKC13] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An

SMT solver for nonlinear theories over the reals. In CADE-24,

volume 7898 of LNCS, pages 208–214. Springer, 2013.

[GLS10] Alberto Griggio, Thi Thieu Hoa Le, and Roberto Sebastiani.

Efficient interpolant generation in satisfiability modulo linear

integer arithmetic. LNCS, 8(3), 2010.

[GM15] Marco Gario and Andrea Micheli. PySMT: a solver-agnostic

library for fast prototyping of SMT-based algorithms. In SMT,

pages 373–384, 2015.

[Gri12] Alberto Griggio. A practical approach to satisability modulo

linear integer arithmetic. JSAT, 8(1/2):1–27, 2012.

[GZ16] Sicun Gao and Damien Zufferey. Interpolants in nonlinear

theories over the reals. In TACAS 2016, Proceedings, volume

9636 of Lecture Notes in Computer Science, pages 625–641.

Springer, 2016.

228



BIBLIOGRAPHY

[Haz93] M. Hazewinkel. Encyclopaedia of Mathematics: Stochastic Ap-

proximation – Zygmund Class of Functions. Encyclopaedia of

Mathematics. Springer Netherlands, 1993.

[HB12a] Krystof Hoder and Nikolaj Bjørner. Generalized property di-

rected reachability. In SAT, volume 7317 of Lecture Notes in

Computer Science, pages 157–171. Springer, 2012.

[HB12b] Krystof Hoder and Nikolaj Bjørner. Generalized property di-

rected reachability. In SAT, volume 7317 of LNCS, pages 157–

171. Springer, 2012.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin

Varaiya. What’s decidable about hybrid automata? Journal

of Computer and System Sciences, 57(1):94 – 124, 1998.

[Hue11] Richard M Hueschen. Development of the Transport Class

Model (TCM) aircraft simulation from a sub-scale Generic

Transport Model (GTM) simulation. Technical report, NASA

Langley Research Center, 2011.

[ICG+16] Ahmed Irfan, Alessandro Cimatti, Alberto Griggio, Marco

Roveri, and Roberto Sebastiani. Verilog2smv: A tool for word-

level verification. In DATE, pages 1156–1159. IEEE, 2016.

[IW15] Ahmed Irfan and Clifford Wolf. Yosys AppNote 012: Con-

verting Verilog to BTOR. http://www.clifford.at/yosys/

files/yosys_appnote_012_verilog_to_btor.pdf, 2015.

[JdM12] Dejan Jovanovic and Leonardo de Moura. Solving non-linear

arithmetic. ACM Comm. Computer Algebra, 46(3/4):104–105,

2012.

229

http://www.clifford.at/yosys/files/yosys_appnote_012_verilog_to_btor.pdf
http://www.clifford.at/yosys/files/yosys_appnote_012_verilog_to_btor.pdf


BIBLIOGRAPHY

[JKSC07] Himanshu Jain, Daniel Kroening, Natasha Sharygina, and Ed-

mund M. Clarke. VCEGAR: verilog counterexample guided

abstraction refinement. In TACAS, 2007.

[JLCÁ13] Sebastian Junges, Ulrich Loup, Florian Corzilius, and Erika

Ábrahám. On gröbner bases in the context of satisfiability-

modulo-theories solving over the real numbers. In CAI, volume

8080 of Lecture Notes in Computer Science, pages 186–198.

Springer, 2013.

[Jov17] Dejan Jovanovic. Solving nonlinear integer arithmetic with

MCSAT. In VMCAI 2017, Proceedings, volume 10145 of

LNCS, pages 330–346. Springer, 2017.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear

programming. In STOC 1984, pages 302–311, New York, NY,

USA, 1984. ACM.

[KB11] Stefan Kupferschmid and Bernd Becker. Craig interpolation in

the presence of non-linear constraints. In FORMATS, volume

6919 of LNCS, pages 240–255. Springer, 2011.

[KCÁ16] Gereon Kremer, Florian Corzilius, and Erika Ábrahám. A

generalised branch-and-bound approach and its application in

SAT modulo nonlinear integer arithmetic. In CASC 2016,

Proceedings, volume 9890 of LNCS, pages 315–335. Springer,

2016.

[KGC16a] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. SMT-

based model checking for recursive programs. Formal Methods

in System Design, 48(3):175–205, 2016.

230



BIBLIOGRAPHY

[KGC16b] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. SMT-

based model checking for recursive programs. Formal Methods

in System Design, 48(3):175–205, 2016.

[KGCC15] Soonho Kong, Sicun Gao, Wei Chen, and Edmund M. Clarke.

dReach: δ-reachability analysis for hybrid systems. In TACAS,

volume 9035 of LNCS, pages 200–205. Springer, 2015.

[KP] Daniel Kroening and Mitra Purandare. EBMC. http://www.

cprover.org/ebmc/.

[KSJ09] Hyondeuk Kim, Fabio Somenzi, and HoonSang Jin. Efficient

term-ite conversion for satisfiability modulo theories. In SAT,

volume 5584 of Lecture Notes in Computer Science, pages 195–

208. Springer, 2009.

[KT11] Temesghen Kahsai and Cesare Tinelli. PKind: A parallel

k-induction based model checker. In PDMC, volume 72 of

EPTCS, pages 55–62, 2011.

[LORR14] Daniel Larraz, Albert Oliveras, Enric Rodŕıguez-Carbonell,

and Albert Rubio. Minimal-model-guided approaches to solv-

ing polynomial constraints and extensions. In SAT 2014, Pro-

ceedings, volume 8561 of LNCS, pages 333–350. Springer, 2014.

[LS14] Suho Lee and Karem A Sakallah. Unbounded scalable veri-

fication based on approximate property-directed reachability

and datapath abstraction. In CAV. Springer, 2014.

[Mag14] Victor Magron. NLCertify: A tool for formal nonlinear op-

timization. In ICMS, volume 8592 of LNCS, pages 315–320.

Springer, 2014.

231

http://www.cprover.org/ebmc/
http://www.cprover.org/ebmc/


BIBLIOGRAPHY

[Mat93] Yuri Vladimirovich Matiyasevich. Hilbert’s Tenth Problem.

Foundations of computing. MIT Press, 1993.

[McM00] Ken McMillan. Cadence smv. Cadence Berkeley Labs, CA,

2000.

[McM03] Kenneth L. McMillan. Interpolation and SAT-based model

checking. In CAV, volume 2725 of LNCS, pages 1–13. Springer,

2003.

[McM05] Kenneth L. McMillan. Applications of Craig interpolants in

model checking. In TACAS, volume 3440 of Lecture Notes in

Computer Science, pages 1–12. Springer, 2005.

[Mel11] Guillaume Melquiond. Coq-interval, 2011.

[MF16] Stefano Minopoli and Goran Frehse. SL2SX translator: From

simulink to SpaceEx models. In HSCC, pages 93–98. ACM,

2016.

[MFK+16] Alexandre Maréchal, Alexis Fouilhé, Tim King, David Monni-

aux, and Michaël Périn. Polyhedral approximation of multi-

variate polynomials using Handelman’s Theorem. In VMCAI,

volume 9583 of LNCS, pages 166–184. Springer, 2016.

[MM16] Érik Martin-Dorel and Guillaume Melquiond. Proving tight

bounds on univariate expressions with elementary functions in

Coq. J. Autom. Reasoning, 57(3):187–217, 2016.

[MSN+16] Ahmed Mahdi, Karsten Scheibler, Felix Neubauer, Martin

Fränzle, and Bernd Becker. Advancing software model check-

ing beyond linear arithmetic theories. In HVC, volume 10028

of Lecture Notes in Computer Science, pages 186–201, 2016.

232



BIBLIOGRAPHY

[Niv61] Ivan Niven. Numbers: Rational and Irrational. Mathematical

Association of America, 1961.

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooper-

ating decision procedures. ACM Trans. Program. Lang. Syst.,

1(2):245–257, 1979.

[NO06] Robert Nieuwenhuis and Albert Oliveras. On SAT modulo

theories and optimization problems. In SAT 2006, Proceed-

ings, volume 4121 of LNCS, pages 156–169. Springer, 2006.

[NO07] Robert Nieuwenhuis and Albert Oliveras. Fast congruence

closure and extensions. Inf. Comput., 205(4):557–580, 2007.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.

Solving SAT and SAT modulo theories: From an abstract

davis–putnam–logemann–loveland procedure to dpll(T ). J.

ACM, 53(6):937–977, 2006.

[NPSS10] Pierluigi Nuzzo, Alberto Puggelli, Sanjit A. Seshia, and Al-

berto L. Sangiovanni-Vincentelli. CalCS: SMT solving for non-

linear convex constraints. In FMCAD, pages 71–79. IEEE,

2010.

[NW88] George L. Nemhauser and Laurence A. Wolsey. Integer and

Combinatorial Optimization. Wiley-Interscience, New York,

NY, USA, 1988.

[Opp80] Derek C. Oppen. Complexity, convexity and combinations of

theories. Theor. Comput. Sci., 12:291–302, 1980.

[Pap81] Christos H. Papadimitriou. On the complexity of integer pro-

gramming. J. ACM, 28(4):765–768, October 1981.

233



BIBLIOGRAPHY

[Rat06] Stefan Ratschan. Efficient solving of quantified inequality con-

straints over the real numbers. ACM Trans. Comput. Log.,

7(4):723–748, 2006.

[RDK+15] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare

Tinelli, and Clark W. Barrett. Counterexample-guided quan-

tifier instantiation for synthesis in SMT. In CAV, volume 9207

of LNCS, pages 198–216. Springer, 2015.

[RG14] Robert Reicherdt and Sabine Glesner. Formal verification of

discrete-time MATLAB/Simulink models using boogie. In

SEFM, volume 8702 of Lecture Notes in Computer Science,

pages 190–204. Springer, 2014.

[Ric68] Daniel Richardson. Some undecidable problems involving ele-

mentary functions of a real variable. J. Symb. Log., 33(4):514–

520, 1968.

[RKFB17] Heinz Riener, Robert Könighofer, Görschwin Fey, and Rod-

erick Bloem. SMT-based CPS parameter synthesis. In

ARCH@CPSWeek, volume 43 of EPiC Series in Computing,

pages 126–133. EasyChair, 2017.

[RPV17] Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan.

HARE: A hybrid abstraction refinement engine for verifying

non-linear hybrid automata. In TACAS, volume 10205 of

LNCS, pages 573–588, 2017.

[RTJB17] Andrew Reynolds, Cesare Tinelli, Dejan Jovanovic, and Clark

Barrett. Designing theory solvers with extensions. In FroCoS,

volume 10483 of LNCS. Springer, 2017.

234



BIBLIOGRAPHY

[sca] SCADE Suite. http://www.esterel-technologies.com/

products/scade-suite.

[Seb07] Roberto Sebastiani. Lazy satisability modulo theories. JSAT,

3(3-4):141–224, 2007.

[SH13] Alexey Solovyev and Thomas C. Hales. Formal verification of

nonlinear inequalities with taylor interval approximations. In

NFM, volume 7871 of LNCS, pages 383–397. Springer, 2013.

[sima] https://www.mathworks.com/help/simulink/ug/

managing-sample-times-in-systems.html. Accessed:

2017-05-31.

[simb] Simulink. https://www.mathworks.com/products/

simulink.html.

[Som] Fabio Somenzi. VIS Verification Benchmarks. ftp://vlsi.

colorado.edu/pub/vis/vis-verilog-models-1.3.tar.gz.

[SS99] João P. Marques Silva and Karem A. Sakallah. GRASP: A

search algorithm for propositional satisfiability. IEEE Trans.

Computers, 48(5):506–521, 1999.

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Check-

ing safety properties using induction and a SAT-solver. In FM-

CAD, volume 1954 of LNCS, pages 108–125. Springer, 2000.

[ST15] Roberto Sebastiani and Silvia Tomasi. Optimization modulo

theories with linear rational costs. ACM Trans. Comput. Log.,

16(2):12:1–12:43, 2015.

[STS+10] Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius

Bozga, and Joseph Sifakis. Compositional translation of

235

http://www.esterel-technologies.com/products/scade-suite
http://www.esterel-technologies.com/products/scade-suite
https://www.mathworks.com/help/simulink/ug/managing-sample-times-in-systems.html
https://www.mathworks.com/help/simulink/ug/managing-sample-times-in-systems.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
ftp://vlsi.colorado.edu/pub/vis/vis-verilog-models-1.3.tar.gz
ftp://vlsi.colorado.edu/pub/vis/vis-verilog-models-1.3.tar.gz


BIBLIOGRAPHY

simulink models into synchronous BIP. In SIES, pages 217–

220. IEEE, 2010.

[Stu94] Bernd Sturmfels. Grobner bases - a computational approach

to commutative algebra (thomas becker and volker weispfen-

ning). SIAM Review, 36(2):323, 1994.

[Stu17] Thomas Sturm. A survey of some methods for real quantifier

elimination, decision, and satisfiability and their applications.

Mathematics in Computer Science, 11(3-4):483–502, 2017.

[Sug] Yoshihide Sugiura. AiPG RTL property checker. http://www.

revsonic.com/e/business/lsisolution/eda/aipg/.

[TdHRZ17] Fatih Turkmen, Jerry den Hartog, Silvio Ranise, and Nicola

Zannone. Formal analysis of XACML policies using SMT.

Computers & Security, 66:185–203, 2017.

[Tiw15] Ashish Tiwari. Time-aware abstractions in HybridSal. In

CAV, volume 9206 of LNCS, pages 504–510. Springer, 2015.

[TKO16] Vu Xuan Tung, To Van Khanh, and Mizuhito Ogawa. raSAT:

An SMT solver for polynomial constraints. In IJCAR, volume

9706 of LNCS, pages 228–237. Springer, 2016.

[Ton09] Stefano Tonetta. Abstract model checking without computing

the abstraction. In FM, volume 5850 of LNCS, pages 89–105.

Springer, 2009.

[Tow07] E.J. Townsend. Functions of a Complex Variable. Read Books,

2007.

[TSCC05] Stavros Tripakis, Christos Sofronis, Paul Caspi, and Adrian

Curic. Translating discrete-time Simulink to Lustre. ACM

Trans. Embedded Comput. Syst., 4(4):779–818, 2005.

236

http://www.revsonic.com/e/business/lsisolution/eda/aipg/
http://www.revsonic.com/e/business/lsisolution/eda/aipg/


BIBLIOGRAPHY

[vce] VCEGAR Verification Benchmarks. http://www.cprover.

org/hardware/benchmarks/vcegar-benchmarks.tgz.

[ver05] Verilog Register Transfer Level Synthesis. IEC 62142-2005

First edition 2005-06 IEEE Std 1364.1, 2005.

[ver06] IEEE Standard for Verilog Hardware Description Language.

IEEE Std 1364-2005 (Revision of IEEE Std 1364-2001), 2006.

[VSS+96] Tiziano Villa, Gitanjali Swamy, Thomas Shiple, Adnan Aziz,

Robert Brayton, Stephen Edwards, Gary Hachtel, Sunil Kha-

tri, and Yuji Kukimoto. VIS user’s manual. Electronics Re-

search Laboratory, University of Colorado at Boulder, 1996.

[WDF+09] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Ro-

hit Kumar, Martin Suda, and Patrick Wischnewski. SPASS

version 3.5. In CADE-22, volume 5663 of LNCS, pages 140–

145. Springer, 2009.

[Wei88] Volker Weispfenning. The complexity of linear problems in

fields. J. Symb. Comput., 5(1/2):3–27, 1988.

[Wei97] Volker Weispfenning. Quantifier elimination for real algebra -

the quadratic case and beyond. Appl. Algebra Eng. Commun.

Comput., 8(2):85–101, 1997.

[Wol] Clifford Wolf. Yosys open synthesis suite. http://www.

clifford.at/yosys/.

[WWH] Cheng-Yin Wu, Chi-An Wu, and Chung-Yang (Ric)

Huang. V3. http://dvlab.ee.ntu.edu.tw/~publication/

V3/index.html.

237

http://www.cprover.org/hardware/benchmarks/vcegar-benchmarks.tgz
http://www.cprover.org/hardware/benchmarks/vcegar-benchmarks.tgz
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/
http://dvlab.ee.ntu.edu.tw/~publication/V3/index.html
http://dvlab.ee.ntu.edu.tw/~publication/V3/index.html


BIBLIOGRAPHY

[YWH12] Hu-Hsi Yeh, Cheng-Yin Wu, and Chung-Yang Ric Huang.

Qutertl: towards an open source framework for RTL design

synthesis and verification. In TACAS. Springer, 2012.

[ZM10] Harald Zankl and Aart Middeldorp. Satisfiability of non-linear

(ir)rational arithmetic. In LPAR-16, 2010, Revised Selected

Papers, pages 481–500, 2010.

238


	Introduction
	Contributions
	Structure of the Thesis

	I Background and State of the Art
	Technical Background
	Satisfiability Modulo Theories
	The SAT Problem
	The SMT Problem
	State of the Art

	Verification Modulo Theories
	Symbolic Transition Systems
	The VMT Problem
	State of the Art

	Systems Design and Verification Tools
	Hierarchical Decomposition-based Design
	Design Languages and Tools
	Verification Support


	II Satisfiability Modulo Nonlinear Arithmetic and Transcendental Functions
	SMT via Incremental Linearization
	Incremental Linearization for SMT(NTA)
	The Main Procedure
	Abstraction Refinement and Spuriousness Check

	Abstraction Refinement
	Refinement for NRA
	Refinement for NTA

	Spuriousness Check and Detecting Satisfiability
	Finding Rational Models for NRA
	Detecting Satisfiability with NTA

	Proofs of Correctness
	Modifications for SMT(NIA)
	Related Work

	Implementation and Experimental Evaluation
	Implementation Details
	Experimental Setup
	Results


	III Verification Modulo Nonlinear Arithmetic and Transcendental Functions
	VMT via Incremental Linearization
	Incremental Linearization for VMT(NTA)
	The Main Procedure
	Spuriousness Check and Abstraction Refinement

	Proof of Correctness
	Related Work

	Implementation and Experimental Evaluation
	Implementation Details
	Experimental Setup
	Results


	IV Verification in Systems Design Automation
	Simulink to nuXmv
	Problem Definition
	Proposed Solution
	Related Work

	Verilog to nuXmv
	Problem Definition
	Proposed Solution
	Related Work

	Implementation and Experimental Evaluation
	Simulink to nuXmv
	Implementation
	Experimental Evaluation

	Verilog to nuXmv
	Implementation
	Experimental Evaluation



	Thesis Conclusions
	Future Directions

	Bibliography

