
MoXI: An Intermediate Language
for Symbolic Model Checking ⋆

Kristin Yvonne Rozier1, Rohit Dureja2, Ahmed Irfan3, Chris Johannsen1,
Karthik Nukala3, Natarajan Shankar3, Cesare Tinelli4, Moshe Y. Vardi5

1 Iowa State University {kyrozier, cgjohann}@iastate.edu
2 Advanced Micro Devices, Inc. (rohit.dureja@amd.com)

3 SRI International {karthik.nukala, ahmed.irfan, shankar}@sri.com
4 The University of Iowa (cesare-tinelli@uiowa.edu)

5 Rice University (vardi@cs.rice.edu)

Abstract. Three progressive challenges stand in between the popular,
“push-button,” industrially valuable technique of symbolic model check-
ing and the level of widespread adoption achieved by other verification
techniques: (1) the specification bottleneck; (2) the state-space explosion
problem; and (3) the lack of standardization and open-source implemen-
tations limiting the impact of advances in (1) and (2). We address this
third challenge. Learning from past definitions of intermediate languages
and common interfaces, as well as input from the international research
community, we define a new, extensible intermediate language for hard-
ware symbolic model checking. Our contributions include: (a) defining
the syntax and semantics of MoXI, the Model eXchange Interlingua
designed to become a standard for the international research commu-
nity; (b) demonstrating that an initial implementation of symbolic model
checking through MoXI performs competitively with current state-of-
the-art symbolic model checkers; (c) reframing the next symbolic model
checking research challenges considering this new community standard.

Keywords: Model Checking · Intermediate Language · SMT.

1 Introduction

Symbolic model checking has made foundational changes to impactful, real-world
system designs, yet its ascent to a common-place verification technique is cur-
rently most limited by a few barriers to adoption, centering on its lack of stan-
dardization. For just one example, in our own work, symbolic model checking
with nuXmv pinpointed hard-to-find, requirements-violating control sequences,
and thus changed the design of NASA’s Automated Airspace Concept [56, 57].
This led to NASA using nuXmv for the next, much larger, stages of the project,
⋆ This work was funded by NSF:CCRI Award #2016592, #2016597, #2016656. The

GitHub organization provides full artifacts: https://github.com/ModelChecker.
Thanks to our international Technical Advisory Board for invaluable feedback; see
the project website: https://modelchecker.temporallogic.org.

 https://github.com/ModelChecker
https://modelchecker.temporallogic.org

2 K. Y. Rozier et al.

including model checking with fault-tree analysis of a large set of possible safe
configurations of the next-generation system [41], and design-space exploration
of over 20,000 possible air traffic control designs [28].

The collection of impactful success stories of symbolic model checking in real-
world system development are far too many and too diverse to cite in a single
paper; there is no question that model checking provides value beyond its cost in
verifying a wide range of systems uphold requirements for safety, security, and
other desirable properties (such as consistency or financial soundness). However,
model checking is still not as commonly-used as informal verification techniques
such as simulation and testing. One primary reason for this is the specification
bottleneck [51]: creating and validating system models and temporal logic spec-
ifications remains a challenging undertaking. The second barrier to adoption
is the famous state-space explosion problem: the combination of the modeling
technique used to represent the relevant system characteristics and the back-
end model-checking algorithm can result in an untenable search space. However,
the third barrier is perhaps both the broadest impediment and the easiest to
overcome: a lack of standardization in symbolic model checking prevents the
propagation of techniques aimed at lowering to the first two barriers.

The SMV modeling language represents an advancement in ameliorating bar-
rier (1), the specification bottleneck: it is an expressive modeling language that,
due to its appealing syntax that intuitively represents many common systems,
continues to be successfully used in a wide range of industrial verification ef-
forts [7,8,13,21,22,27,28,31,38,41,44,45,49,54–57]. Two freely-available model
checkers previously provided viable research platforms for checking SMV lan-
guage models: CadenceSMV [43] and NuSMV [14] (which is integrated into
today’s nuXmv [47]). Yet, today CadenceSMV’s 32-bit pre-compiled binary and
nuXmv’s increasingly restricted, closed-source releases are no longer suitable for
research, e.g., into improved model-checking algorithms. How can we continue
the progression of high-level language model checking in SMV with no open-
source research platforms that allow new algorithms under the hood, e.g., to
continue mitigating the state-space explosion problem?

0 5 10 15 20 25 30 34
Property ID

0

500

1000

1500

2000

2500

3000

C
he

ck
in

g
ti

m
e

(m
in

ut
es

)

Typical IC3 Incremental IC3 FuseIC3

Fig. 1: FuseIC3 [22]: model checking 34 formu-
las over 1,620 models is 5.48x faster.

Continuing with our ex-
ample of symbolic model
checking in NASA’s next-
generation transportation sys-
tem, the next step of the
process was to narrow down
the design space (system de-
signers reduced the possi-
ble configurations from 20,250
to 1,620), add details, and
continue design-space model
checking to refine the (safe)
design set. To improve per-
formance (per barrier (2), the

MoXI: An Intermediate Language for Symbolic Model Checking 3

state space explosion prob-
lem), we designed a new algorithm for model checking large design spaces,
FuseIC3 [22]. However, to compare FuseIC3 with the state-of-the-art symbolic
model-checking algorithms (namely, those claimed to be used in nuXmv [24]
and in industry [4]), we had to re-implement both of these existing model
checkers from scratch — our results appear in Figure 1. In other words, there
was no easy way to compare state-of-the-art model checking back-end algorithms
because the existing implementations were closed source, and did not check mod-
els in the same modeling languages. No tool accepted our SMV-language models
and implemented the best back-end model-checking algorithm for the industrial
verification task at hand, and there was no way to add additional algorithms
to nuXmv because it is closed source. (It would also have been useful to check
how closely nuXmv implemented the state-of-the-art algorithms described in
the literature, and to be able to modify the existing implementation.) In addi-
tion to being a time-consuming engineering task, this hurdle also curtailed the
use of model checking in this NASA project. The lack of standardization in sym-
bolic model checking meant that it was no longer the case that the benefits of
model checking outweighed the cost. While we successfully ameliorated barriers
(1) and (2), at least in the context of the task at hand, we could not apply our
advances efficiently, or in the context of existing, and trusted, model-checking
infrastructures.

This is not a unique story. The Hardware Model Checking Competition
(HWMCC) [6] regularly spurs back-end algorithmic advances in symbolic model
checking. However, the competing tools historically only accepted models in the
bit-level input language Aiger [1, 2]; HWMCC only recently advanced to the
word-level, yet still machine-oriented, language Btor2 [46]. Such languages do
not support direct modeling of modern complex systems — the way SMV does
— and hinder adoption; it is very hard to convince industrial system designers
that Aiger or Btor2 models correctly capture their higher-level systems. Most
existing pathways for translating from high-level models to Aiger or Btor2 fo-
cus on hardware designs, and do not provide a natural means to describe realistic
systems. Even outside of HWMCC, many new, advanced, model-checking algo-
rithms get developed for open-source, award-winning, model-checking engines,
like ABC [10], which do not accept models in popular languages that would
benefit from model checking using those algorithms. Then, we also face the open
problem of translating counterexamples produced, e.g., by ABC, back into mean-
ingful counterexamples for a non-hardware-centric higher-level language model,
such as a model in SMV.

For another example, the PANDA algorithm and tool achieved up to expo-
nential performance improvement using the same symbolic model-checking back-
end, just by encoding LTL input specifications differently [50]. Yet PANDA’s
impact is limited since the implementation is only compatible with tools that
accept models written in SMV. If, instead, PANDA translated LTL specifications
into a common intermediate language, we could use it to improve model-checking
performance broadly.

4 K. Y. Rozier et al.

To alleviate the language issues above we introduce Model Exchange In-
terlingua (MoXI), an intermediate language meant to be a common input and
output standard for model checkers for finite- and infinite-state systems. MoXI
was designed to be general enough to be an intermediate target language for a
variety of user-facing specification languages for model checking. At the same
time, MoXI is simple enough to be easily comparable to lower-level languages or
be directly supported by model-checking tools based on SAT/SMT technology.

Models expressed in MoXI are expected to be produced and processed by
tools. Thus MoXI provides: a simple, easily-machine-parsable syntax; a rich
set of data types; minimal syntactic sugar (at least initially); a well-understood
formal semantics; a small but comprehensive set of commands; and simple trans-
lations to lower-level modeling languages, such as Btor2 [46]. Based on these
principles, MoXI does not provide direct support for many of the expressive
features offered by current hardware modeling languages such as VHDL [33,35]
and Verilog [34], or more general-purpose system modeling languages such as
SMV [42, 48], TLA+ [39], PROMELA [32], Simulink [19], SCADE [17, 20], and
Lustre [11,36]. However, it is sufficiently expressive that problems defined in rea-
sonably large fragments of those languages can be reduced to problems in MoXI.
MoXI closely resembles the SMT-LIB language [3,53], but with new commands
to define and verify systems. It allows the definition of multi-component syn-
chronous or asynchronous reactive systems. It also allows the specification and
checking of reachability conditions (or, indirectly, state and transition invariants)
and deadlocks, possibly under fairness conditions on input values.

With MoXI, it is now possible to introduce or refine expressive modeling
languages, model check them using existing and future state-of-the-art back-
end algorithms, and return counterexamples in the original, high-level modeling
language, simply by creating a translation between the modeling language and
MoXI. Advances in back-end model checking algorithms can now be leveraged
for models in any number of high-level modeling languages, simply by creating
a translation between their low-level representations and MoXI. Most impor-
tantly, innovations mitigating the specification bottleneck and the state-space
explosion problem will now push forward symbolic model checking as a whole,
rather than advancing a single tool.

We introduce the notation and trace semantics underlying MoXI in Sec-
tion 2. Section 3 defines MoXI, including the semantics for system definition
and system checking. We demonstrate a prototype implementation translating
the SMV modeling language through MoXI for model checking with the top
tools from the last HWMCC in Section 4. Section 5 concludes with a concrete
list of future research directions for the international symbolic model checking
community, given the standardization provided by MoXI.

2 Preliminaries

The base logic of MoXI is the same as that of SMT-LIB: many-sorted first-order
logic with equality and let binders. We refer to this logic simply as FOL. When

MoXI: An Intermediate Language for Symbolic Model Checking 5

we say formula, with no further qualifications, we refer to an arbitrary formula
of FOL (possibly with quantifiers and let binders).

We say that a formula is quantifier-free if it contains no occurrences of the
quantifiers ∀ and ∃. We say that it is binder-free if it is quantifier-free and also
contains no occurrences of the let binder. The scope of binders and the notion
of free and bound (occurrences of) variables in a formula are defined as usual.

2.1 Notation

If F is a formula and x = (x1, . . . , xn) a tuple of distinct variables, we write
F [x] or F [x1, . . . , xn] to express the fact that every variable in x occurs free in
F (although F may have additional free variables). Let σ(xi) denote the type or
sort of variable xi in x. We denote by x′ the tuple (x′

1, . . . , x
′
n) such that σ(xi) =

σ(x′
i). We write x,y to denote the concatenation of tuple x with tuple y. When

it is clear from the context, given a formula F [x] and a tuple t = (t1, . . . , tn)
of terms of the same type as x = (x1, . . . , xn), we write F [t] or F [t1, . . . , tn] to
denote the formula obtained from F by simultaneously replacing each occurrence
of xi by ti for all i = 1, . . . , n. A formula may contain uninterpreted constant and
function symbols, that is, symbols with no constraints on their interpretation.
For most purposes, we treat uninterpreted constant and function symbols as free
(rigid) variables respectively of first and second order.

Definition 1 (Transition system). A transition system S is a pair of predi-
cates of the form S = (IS [i,o, l], TS [i,o, l, i

′,o′, l′]) where
1. i and i′ are tuples of input variables;
2. o and o′ are tuples of output variables;
3. l and l′ are tuples of local variables;
4. IS is a formula representing the initial state condition; and
5. TS is a formula representing the transition condition.

2.2 Trace Semantics

A transition system implicitly defines a model (i.e., a Kripke structure) of First-
Order Linear Temporal Logic (FO-LTL). The language of FO-LTL extends that
of FOL with the same modal operators of time as in standard (propositional)
LTL: always, eventually, next, until, release. For our purposes of defining
the semantics of transition systems, it is enough to consider just the always and
eventually operators.

The set of non-temporal operators depends on the particular theory, in
the sense of SMT, considered (e.g., linear integer/real arithmetic, bit vectors,
strings, and so on, and their combinations). The meaning of theory symbols
(such as arithmetic operators) and theory sorts (such as Int, Real, Array(Int,Real),
BitVec(3), . . .) is fixed by the theory T . With a fixed theory T , the meaning
of a FO-LTL formula F is provided by an interpretation of the uninterpreted
(constant and function) symbols of F , if any, as well as an infinite sequence of
valuations for the free variables of F .

6 K. Y. Rozier et al.

Let tuple x = (x1, . . . , xn) denote distinct state variables, meant to represent
the state of a computation system. We write formulas of the form F [f ,x,x′]
where f is a tuple of uninterpreted (constant and function) symbols. If F has
free occurrences of variables from x but not from x′ we call it a one-state formula;
otherwise, we call it a two-state formula.

A valuation of x, or a state over x, is a function mapping each variable x
in x to a value of x’s sort. Let κ be a positive ordinal up to ω, the cardinality
of the natural numbers. A trace (of length κ over x) is any state sequence
π = (sj | 0 ≤ j < κ). Note that π is the finite sequence s0, . . . , sκ−1 when κ < ω,
and is the infinite sequence s0, s1, . . . otherwise. For all i such that 0 ≤ i < κ,
we denote by π[i] the state si and by πi the subsequence (sj | i ≤ j < κ).

Infinite trace semantics Let F [f ,x,x′] be a formula as above. If I is an
interpretation of f in the theory T and π is an infinite trace, then (I, π) satisfies
F , written (I, π) |= F , iff one of the following holds:
1. F is atomic and I[x 7→ π[0](x),x′ 7→ π[1](x)] satisfies F as in FOL;
2. F = ¬G and (I, π) ̸|= G;
3. F = G1 ∧G2 and (I, π) |= Gi for i = 1, 2;
4. F = ∃z G and (I[z 7→ v], π) |= G for some value v for x;
5. F = eventually G and (I, πi) |= G for some i ≥ 0;
6. F = always G and (I, πi) |= G for all i ≥ 0.

The semantics of the propositional connectives ∨,→,↔, and the quantifier ∀
can be defined by reduction to the connectives above (e.g., by defining G1 ∨G2

as ¬(¬G1 ∧ ¬G2), and so on). Note that ∃z is a static, or rigid, quantifier: the
meaning of the variable it quantifies does not change over time, i.e., from state
to state in π. Uninterpreted symbols are rigid in the same sense: their meaning
does not change over time.6 Given a transition system S = (IS , TS), the infinite
trace semantics of S is the set of all pairs (I, π) of interpretations I in T and
infinite traces π such that (I, π) |= IS ∧ always TS . We call any such pair an
execution of S.

Finite trace semantics Given formula F [f ,x,x′], interpretation I in theory
T , infinite trace π, and n ≥ 0, (I, π) n-satisfies F , written (I, π) |=n F , iff
1. F is atomic and I[x 7→ π[0](x),x′ 7→ π[1](x)] satisfies F as in FOL;
2. F = ¬G and (I, π) ̸|=n G;
3. F = G1 ∧G2 and (I, π) |=n Gi for i = 1, 2;
4. F = ∃z G and (I[z 7→ v], π) |=n G for some value v for z;
5. F = eventually G and (I, πi) |=n−i G for some i = 0, . . . , n; or
6. F = always G and (I, πi) |=n−i G for all i = 0, . . . , n.

The semantics of the propositional connectives ∨,→,↔, and the quantifier
∀ is defined by reduction to the connectives above. Intuitively, n-satisfiability
6 Another way to understand the difference between rigid and non-rigid symbols is that

state variables are mutable over time, whereas quantified variables, theory symbols,
and uninterpreted symbols are all immutable.

MoXI: An Intermediate Language for Symbolic Model Checking 7

specifies when a formula is true over a trace’s first n states. Note that this notion
is well defined even when n = 0 regardless of whether F has free occurrences
of variables from x′ or not. This is true in the atomic case because the infinite
trace π contains the state π[1]. The claim can be shown in the general case by a
simple inductive argument.

The notion of n-satisfiability is useful in state reachability. A state satisfying
a (non-temporal) state property R is reachable in a system S only if the temporal
formula eventually R is n-satisfied by an execution of S for some n. Note that
the converse does not hold; R can be reachable in a system S without being
n-satisfied by an execution of S.

3 The MoXI Intermediate Language

MoXI assumes a discrete and linear notion of time and adopts the trace-based
semantics defined in the previous section. It builds on the SMT-LIB language, ex-
tending it with commands to represent transition systems and to specify proper-
ties or queries. It also standardizes a format for witnesses generated by back-end
algorithms. Table 1 shows the supported SMT-LIB commands in MoXI. Since
enumerated sorts are useful in modeling real-world systems, MoXI introduces a
declare-enum-sort command. For example, (declare-enum-sort s (c1 · · ·
cn)) declares s to be an enumerative type with (distinct) values c1, . . . , cn.

Table 1: Supported SMT-LIB commands in MoXI
(declare-sort s n)
Declares s to be a sort symbol (i.e., type constructor) of arity n.
(define-sort s (u1 · · · un) τ)
Defines S as a synonym of a parametric type τ with parameters u1 · · ·un.
(declare-const c σ)
Declares a constant c of sort σ.
(define-fun f ((x1 σ1) · · · (xn σn)) σ t)
Defines a function f with inputs x1, . . . , xn (of respective sort σ1, . . . , σn),
output sort σ, and body t.
(set-logic L)
Defines the model’s data logic, i.e., the background theories of relevant data
types (e.g., integers, reals, bit vectors, and so on) as well as the language of
allowed logical constraints (e.g., quantifier-free, linear, etc.).

3.1 System Definition

MoXI allows the definition of a model as the composition of one or more systems.
MoXI ’s system definition commands follow the SMT-LIB syntax for attribute-
value pairs. Each system definition:

1. defines a transition system via the use of SMT formulas, imposing minimal
syntactic restrictions on those formulas;

2. is parameterized by a state signature, a sequence of typed variables;
3. partitions state variables into input, output, and local variables;
4. can be expressed as the (a)synchronous composition of other systems.

8 K. Y. Rozier et al.

Atomic systems MoXI defines an atomic transition system that has m inputs,
n outputs, and p local variables via the command:

(define-system S
:input ((i1 δ1) · · · (im δm)) :output ((o1 τ1) · · · (on τn))
:local ((l1 σ1) · · · (lp σp)) :init I :trans T :inv P), where

– S is the system’s identifier;
– each ij is an input variable of sort δj ;
– each oj is an output variable of sort τj ;
– each lj is a local variable of sort σj ;
– each ij , oj , lj denote current-state values;
– I, the initial condition, is a one-state formula over the unprimed system’s

variables (input, output, and local state variables) that expresses a constraint
on the initial states of S;

– T , the transition condition, is a two-state formula over all of the system’s
variables (primed and unprimed) that expresses a constraint on the state
transitions of S;

– P , the invariance condition, is a one-state formula over all of the unprimed
system’s variables that expresses a constraint on all reachable states of S.
Next-state variables are not provided explicitly but are denoted by convention

by appending ′ to the names of the current-state variables ij , oj , and lj . Note
that all attributes are optional but can occur at most once, and the order of the
attributes is immaterial except that :input, :output, and :local must occur
before :init, :trans, and :inv. The default value for a missing attribute is the
empty list () for :input, :output, and :local; and true for :init, :trans, and
:inv. Syntactically, the system identifier, the input, output, and local variables
are SMT-LIB symbols. In contrast, the sorts δj , τj , σj are SMT-LIB sorts, while
the formulas I, T , and P are SMT-LIB terms of type Bool.

Semantics Let i = (i1, . . . , im), o = (o1, . . . , on), l = (l1, . . . , lp), and x = i,o, l.
A system S introduced by the define-system command above is a transition
system whose behavior consists of all the (infinite) executions (I, π) over x such
that (I, π) |= I[x]∧ always (P [x]∧ T [x,x′]). We call IS = I[x] the initial state
predicate of S and TS = P [x] ∧ T [x,x′] the transition predicate of S.

Composite systems Transition systems can be defined as the synchronous7
composition of other systems using the command:

(define-system S :input ((i1 δ1) · · · (im δm))
:output ((o1 τ1) · · · (on τn)) :local ((l1 σ1) · · · (lp σp))
:subsys (N1 (S1 x1 y1)) · · · :subsys (Nq (Sq xq yq))
:init I :trans T :inv P), where

– :input, :output, :local, :init, :trans, and :inv are as in atomic system
definitions;

7 The asynchronous composition of systems is planned for a later version of MoXI.

MoXI: An Intermediate Language for Symbolic Model Checking 9

– q > 0 and each Si is the name of a system other than S;
– the names S1 . . . , Sq need not be all distinct;
– each Ni is a local synonym for Si, with N1, . . . , Nq distinct;
– each xi consists of S’s variables of the same sort as Si’s input;
– each yi consists of S’s local/output variables of the same sort as Si’s output;
– the directed subsystem graph rooted at S is acyclic.

Semantics For k = 1, . . . , q, let Sk = (Ik[ik,ok, lk], Tk[ik,ok, lk, i
′
k,o

′
k, l

′
k]),

with the elements of l1, . . . , lq all mutually distinct. Let i = (i1, . . . , im), o =
(o1, . . . , on), l = (l1, . . . , lp), l1, . . . , lq, and x = i,o, l. A composite system S
introduced by the define-system command above is a transition system whose
behavior consists of all the (infinite) executions (I, π) over x such that (I, π) |=
IS [x] ∧ always TS [x,x

′], where
– IS [x] = I[x] ∧

∧
k=1,...,q Ik[xk,yk, lk] and

– TS [x,x
′] = P [x] ∧ T [x,x′] ∧

∧
k=1,...,q Tk[xk,yk, lk,x

′
k,y

′
k, l

′
k].

Sanity Requirements on IS and TS Every system defined in MoXI is ex-
pected to execute forever. This is not a limitation in practice because systems
meant to reach a final state can be modeled with states that cycle back to
themselves and produce stuttering outputs. In such semantics, the reachability
of a deadlocked state (i.e., a state with no successors in the transition relation)
indicates the presence of an error in the system’s definition. For a system defini-
tion to define a deadlock-free system, the following must hold for the variables
x = i,o, l and their primed versions.

(1) Every assignment of values to the input variables i can be extended to an
assignment to x that satisfies IS [x].

(2) For every reachable state s (i.e., assignment to the variables x), every as-
signment to the primed input variables i′ can be extended to an assignment
s′ to x′ so that s, s′ satisfies TS [x,x

′].

The first restriction guarantees that the system can start. The second ensures
that from any reachable state and for any new input, the system can move to
another state (and also produce output). Given a specified background theory,
– A sufficient condition for (1) is the validity of the formula

∀i∃o ∃l IS [i,o, l]

– A sufficient condition for (2) is the validity of the formula

∀i ∀o ∀l ∀i′ ∃o′ ∃l′ TS [i,o, l, i
′,o′, l′]

Note that this is not a necessary condition as it needs not apply to unreach-
able states. Let Reachable[i,o, l] denote the (possibly higher-order) formula
satisfied exactly by the reachable states of S. Then, a more accurate sufficient
condition for (2) above would be the validity of the formula

∀i ∀o ∀l ∀i′ ∃o′ ∃l′ Reachable[i,o, l] ⇒ TS [i,o, l, i
′,o′, l′]

10 K. Y. Rozier et al.

3.2 System Checking

The properties to check for a (possibly composite) defined system are specified
using the following command for defining queries on the system’s behavior.

(check-system S
:input ((i1 δ1) · · · (im δm)) :output ((o1 τ1) · · · (on τn))
:local ((l1 σ1) · · · (lp σp)) :assumption (a A) :fairness (f F)
:reachable (r R) :current (c C) :query (q (g1 · · · gq))
:queries ((q1 (g1,1 · · · g1,n1

)) · · · (qt (gt,1 · · · gt,nt
)))), where

– S is the identifier of a system with m inputs, n outputs, and p local variables;
– i = (i1, . . . , im) is a renaming of input variables in S of sort δ = (δ1, . . . , δm);
– o = (o1, . . . , on) is a renaming of output variables in S of sort τ = (τ1, . . . , τn);
– l = (l1, . . . , lp) is a renaming of local variables in S of sort σ = (σ1, . . . , σp);
– a, r, f , c, q, q1, . . . , qk are identifiers;
– A is a formula over i, o, l, i′ expressing an assumption on i′;
– F is a formula over i, o, l, i′ expressing a fairness condition on i′;
– R is a formula over i, o, l, i′, o′, l′ expressing a state reachability condition;
– C is a formula over i, o, l expressing a state initiality condition;
– each gj and gj,k ranges over the a, r, f , c identifiers;
– (q (g1 · · · gq)) defines a query q as consisting of the formulas named by

g1, . . . , gq; the same holds for each (qj (gj,1 · · · gj,nj
)).

Note that A, F , R, and C are all non-temporal formulas. Each of the at-
tributes :assumption, :reachable, :query, and :queries can occur zero or
more times. Moreover, a query can contain more than one assumption, fairness
condition, and reachability condition but at most one initiality condition.

Semantics Each query (q and each qj) in the check-system command asks for
the existence of a trace. The query is to be evaluated with infinite-state semantics
if it includes at least one fairness condition, and finite-state semantics otherwise.
Specifically, for a system S, let IS and TS be the initial state and transition
predicates of S modulo the variable renamings in the check-system command.
Let t, u, v ≥ 0. The semantics of a query are defined as follows:

(1) A query of the form (a1 · · · at r1 · · · ru), where each aj and rj identify an
assumption Aj and reachability condition Rj , respectively, is satisfiable iff

IS ∧ always TS

∧ always (A1 ∧ · · · ∧At)
∧ eventually R1 ∧ · · · ∧ eventually Ru

is n-satisfiable in LTL for some n ≥ 0.

(2) A query of the form (c a1 · · · at r1 · · · ru), where c is the initiality condition
C, and each aj and rj identify an assumption Aj and reachability condition
Rj , respectively, is satisfiable iff

MoXI: An Intermediate Language for Symbolic Model Checking 11

C ∧ always TS

∧ always (A1 ∧ · · · ∧At)
∧ eventually R1 ∧ · · · ∧ eventually Ru

is n-satisfiable in LTL for some n ≥ 0.

(3) A query of the form (a1 · · · at r1 · · · ru f1 · · · fv), where each aj , rj , and
fj identify an assumption Aj , a reachability condition Rj , and a fairness
condition Fj , respectively, is satisfiable iff

IS ∧ always TS

∧ always (A1 ∧ · · · ∧At)
∧ always eventually F1 ∧ · · · ∧ always eventually Fv

∧ eventually R1 ∧ · · · ∧ eventually Ru

is satisfiable in LTL.

(4) A query of the form (c a1 · · · at r1 · · · ru f1 · · · fv), where c is the initiality
condition C and each aj , rj , and fj identify an assumption Aj , a reachability
condition Rj , and a fairness condition Fj , respectively, is satisfiable iff

C ∧ always TS

∧ always (A1 ∧ · · · ∧At)
∧ always eventually F1 ∧ · · · ∧ always eventually Fv

∧ eventually R1 ∧ · · · ∧ eventually Ru

is satisfiable in LTL.

Let T be the background theory specified for a MoXI model. For each satisfiable
query in the check-system command, the back-end model checking algorithm
is expected to produce (1) a T -interpretation I of the (global) free symbols in
the script; (2) a witnessing trace in I. For each unsatisfiable query, the model
checker may return a proof certificate for that query’s unsatisfiability.

The interpretation I must be the same for all queries in the same :queries
attribute. In contrast, queries in different attributes may each interpret the free
symbols differently. Regardless of where it occurs, each query may have its own
witnessing trace.

3.3 System Checking Response

MoXI also defines the content and format of possible responses (from the back-
end model checker) to a check-system command. Witness traces returned by
the model checker are currently limited to lasso traces, that is, traces of the form
plω, where p and l are finite sequences of state, or trails. Each witness is then
represented by two trails: (1) a prefix trail p, and (2) a lasso trail l. In contrast,
a proof certificate for a trace represents a proof of the unsatisfiability of the
query. Currently, MoXI does not specify the format of proof certificates except
for requiring them to be SMT-LIB S-expressions. Figure 2 shows the format for
a check-system command with input i, output o, local variable s, and queries
q1, q2, q3, where q1 has a reachability condition r and fairness condition f.

12 K. Y. Rozier et al.

1 (check-system-response
2 :verbosity full
3 :query (q1 :result sat :model m :trace t)
4 :query (q2 :result unsat :certificate c)
5 :query (q3 :result unknown) ; for timeouts and other cases
6 :trace (t :prefix p :lasso l) ; t = pl^w
7 :model (m M) ; M is an interpr. in SMT-LIB format
8 :trail (p ((0 (i i0) (o o0) (s s0) (r r0) (f f0)); first state in p
9 ...

10 (j (i ij) (o oj) (s sj) (r rj) (f fj)); last state in p
11)
12)
13 :trail (l ((...) ... (...))) ; similar to p
14 :certificate (c ...)
15)

Fig. 2: Format of a model checker’s response to a check-system command.

3.4 Example

As an illustrative example of a MoXI model, consider a timed switch with a
single Boolean input and output where the output switches from its current value
if the next input is true or the output has been true for at least 10 consecutive
steps. Figure 3 shows a full definition of such a system in MoXI.

1 (set-logic QF_LIA)
2 (declare-enum-sort LightStatus (on off))
3

4 (define-system TimedSwitch :input ((press Bool))
5 :output ((sig Bool))
6 :local ((s LightStatus) (n Int))
7 :inv (= sig (= s on))
8 :init (and (= n 0) (= s (ite press on off)))
9 :trans (let (; transitions

10 (turn-on (and (= s off) press ’ (= s’ on) (= n’ n)))
11 (stay-on (and (= s on) (< n 10) (not press ’)
12 (= s’ on) (= n’ (+ n 1))))
13 (turn-off (and (= s on) (or (>= n 10) press ’)
14 (= s’ off) (= n’ 0)))
15 (stay-off (and (= s off) (not press ’) (= s’ off) (= n’ n)))
16)
17 (or turn-on stay-on turn-off stay-off)
18)
19)
20

21 (check-system TimedSwitch :input ((press Bool))
22 :output ((sig Bool))
23 :local ((s LightStatus) (n Int))
24 :reachable (r1 (and press (not sig) (= s off)))
25 :query (q1 (r1))
26)

Fig. 3: Example MoXI model of a timed switch with a 10-step timeout.

To start, we select the SMT-LIB logic QF-LIA, which restricts the language
of formulas to quantifier-free formulas over linear integer arithmetic. Then, we
declare an enumeration sort to represent the internal state of the switch. Next,

MoXI: An Intermediate Language for Symbolic Model Checking 13

1 (check-system-response TimedSwitch
2 :query (q1 :result sat :trace w1)
3 :trace (w1 :prefix t1)
4 :trail (t1 (0 (n 0) (s on) (sig true) (press true))
5 (1 (n 0) (s off) (sig false) (press true)))
6)

Fig. 4: A possible response to the check-system command from Figure 3.

we define the timed switch itself. This begins by declaring its input variable
press, output variable sig, and local variables s and n to track, respectively,
the switch’s current state (on or off) and the number of steps the switch has
been continuously set to on. In the same definition, on line 8, we define an
invariant stating that sig is true exactly when the value of s is on. The initial
condition, on line 9, sets n to 0 and s to the enumeration value corresponding
to the initial value of press. We finish up the definition of TimedSwitch with
the transition relation on lines 9-19, provided in named transition style,8 where
we define each possible transition separately and one of the transitions gets non-
deterministically chosen each time. In our case, we have four possibilities based
on the pre- and post-state of the transition as follows.

turn-on: when s is off in the pre-state and press is true in the post-state.
stay-on: when s is on and n < 10 in the pre-state, and press is false in the

post-state.
turn-off: when s is on in the pre-state and either n is at least 10 in the pre-

state or press is false in the post-state.
stay-off: when s is off in the pre-state and press is false in the post-state.

Finally, on lines 21-26, we issue a check request on the system, asking whether it
can reach a state where press is true, sig is false, and s is off. Figure 4 provides
a possible response to this request. It shows a finite trace, represented as a lasso
trace with an empty lasso, where the transition turn-off is taken immediately
from an initial state (state 0) where s is on.

4 Translator Toolchain

A core application for MoXI is as an intermediate language in a toolchain in-
tegrating a high-level modeling language and a low-level representation for a
model-checking back end. As Figure 5 shows, this allows users to write models
in an intuitive, high-level language while also leveraging state-of-the-art algo-
rithms provided by model checkers that accept a low-level language as input.

Prototype Implementation We provide a prototype Python implementa-
tion of such a toolchain, using SMV and Btor2 as the high-level and low-level
languages, respectively [37]. We selected SMV due to its ubiquity in modeling
symbolic transition systems [7, 8, 13,21,22,27,28,31,38,41,44,45,49,54–57] and
8 MoXI’s syntax also supports other styles, such as equational or condition-action.

14 K. Y. Rozier et al.

Fig. 5: The abstract translator toolchain provides translators from a high-level
model to low-level model via MoXI, and back for generated witnesses. Blue
denotes models and their queries, green denotes a translator, and yellow denotes
a witness. Examples of high-level languages include SMV and Verilog; low-level
languages include Btor2 and Aiger. All blue boxes are behaviorally equivalent,
as are all yellow boxes.

Btor2 due to it being the input language for the most-recent 2020 Hardware
Model Checking Competition [6]. The toolchain translates SMV models to be-
haviorally equivalent MoXI models, and subsequently to Btor2 models. Then,
the tool translates responses from a Btor2 model checker back to SMV-style
responses via MoXI responses.

Experimental Evaluation To evaluate the effectiveness of our toolchain, we
ran it over the set of 960 QF_BV and QF_ABV benchmarks provided with the
nuXmv public release and compared the performance of a variety of back-end
model checkers: AVR [30] (hwmcc20 GitHub branch), nuXmv [12] (version 2.0
— latest public release), and Pono [40] (commit #b243cef — latest develop-
ment head).

We ran two experiments: the first ran each solver using IC3-based [9] al-
gorithms and the second ran each solver using a portfolio approach of BMC,
K-Induction, and IC3-based algorithms. In the latter case, we collected the best
time among the three techniques. For each experiment, we ran nuXmv directly
on the SMV benchmarks, i.e., SMV → nuXmv, and ran the other two solvers
on Btor2 generated from the toolchain presented above, i.e., SMV → MoXI
→ Btor2 → AVR/Pono and back. Here are some details about each tool.
– AVR (Yices2 [23] as the back-end SMT solver): BMC [5], K-induction based

on [52], IC3 based on [29].
– nuXmv (MathSAT5 [16] as the back-end SMT solver): BMC [5], K-induction

based on [25], and IC3 based on [15].
– Pono (Boolector [46] and MathSAT5 [16] as back-end SMT solvers): BMC [5],

K-induction based on [25], IC3 based on [15].
In all cases, no discrepancies were found, i.e., no two model checkers returned
conflicting safe and unsafe results, and all generated Btor2 was well-formed
according to the reference checker catbtor [46].

As the top of Figure 6 shows, the three model checkers nuXmv, AVR, and
Pono complement each other when using their IC3-based algorithms; each solver
performs similarly, but the virtual-best outperforms each individual by a no-
ticeable margin. Similarly, the bottom of Figure 6 shows that while the model

MoXI: An Intermediate Language for Symbolic Model Checking 15

0

200

400

600

#
So

lv
ed

AVR-ic3 Pono-ic3
nuXmv-ic3 vb-ic3

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0

200

400

600

Wall-clock Time (s)

#
So

lv
ed

vb-AVR vb-Pono
vb-nuXmv vb-all

Fig. 6: Performance comparison on SMV-language benchmark queries using IC3
(Top) and portfolio approach (Bottom) across three different model checkers:
SMV benchmarks → nuXmv, a translation of SMV benchmarks → MoXI →
Btor2 → AVR (and back), and a translation of SMV benchmarks → MoXI
→ Btor2 → Pono (and back). The vb-* represents the virtual-best back-
end solver for each model checker. The portfolio approach represents the best
time using BMC, k-induction, and IC3 algorithms. Wall-clock time for the non-
nuXmv plots include translation time.

checkers perform similarly using a portfolio approach, they again complement
each other, as shown by the virtual-best outperforming each model checker in-
dividually. Importantly, our initial, non-optimized translation of SMV-language
benchmarks through MoXI does not inhibit the model checking performance of
either AVR or Pono, compared to using nuXmv directly on the same SMV-
language benchmarks distributed with that tool.

5 Future Directions for Symbolic Model Checking

Creating an international standard for symbolic model checking changes the
landscape of research next steps, from low-hanging fruit to future challenges.
There is even more reason to continue and expand on current research directions
aimed at breaking down the barriers to the wider adoption of symbolic model
checking by addressing (1) the specification bottleneck; and (2) the state-space
explosion problem. Having laid a foundation for standardization, we hope that
the community can converge on MoXI as a common intermediate language and

16 K. Y. Rozier et al.

leverage this standard in pursing research directions that make advances in areas
(1) and (2).

High-level language translation. In addition to creating translations for existing
high-level modeling languages to/from MoXI, there is now an opportunity to
create new languages that take advantage of the access to back-end algorithms
that MoXI provides. Current model-checking high-level languages were designed
to be as general as possible, to represent a reasonably broad class of systems since
usually each model-checking tool accepts only one modeling language. Now, there
is more room for highly-specialized, system-specific languages, further mitigating
the specification bottleneck.

Low-level language translation. To loop in current and future model-checking
back-end algorithms, we need translations between MoXI and the low-level rep-
resentations used by model-checking tools. Future algorithms may be designed
with such a translation in mind. Though it was designed as an intermediate lan-
guage, MoXI may be sufficiently low-level to serve as the input representation
for future back-end tools; this is another avenue worth investigating.

Translation optimizations. We provide initial translations between the high-level
SMV language and MoXI, and between MoXI and the low-level representation
Btor2 [37]. However, these are just proofs of concept. They demonstrate that
a translation is possible and that the design of MoXI maintains the expres-
siveness we intended. These translations were not designed to be optimal, or
even efficient, only correct and, hopefully, transparent. Our initial toolchain en-
codes LTL specifications by using PANDA [50] to translate them into SMV,
then translating the PANDA-generated SMV models to MoXI; exploring direct
LTL-to-MoXI translations could improve model-checking performance. Section
4 demonstrates that model checking through MoXI does not exacerbate the
state-space explosion problem, but there is certainly ample room for improve-
ment. We expect a progression of future papers creating increasingly performant
translations, improving upon our translations and those contributed by others
(see above).

Proofs and benchmarks. While we have extensively investigated the correctness
of our initial MoXI translations, we have yet to prove them correct formally,
for instance by using an interactive theorem prover. We believe it is possible,
though challenging, to state the semantic equivalence of representations in a
high- or low-level language and MoXI as theorems, prove them correct using a
theorem prover like PVS, and then generate verified translators using a tool like
PVS2C [18,26].9 Lower-hanging fruit involves creating, packaging, and releasing
benchmarks for MoXI translations that help others check their new translations
and serve as performance checkpoints for translation tools.

9 Thanks to Laura Gamboa Guzman, Katherine Kosaian, and Yi Lin for their initial
investigations into this possibility.

MoXI: An Intermediate Language for Symbolic Model Checking 17

Extensions. Though we have initially addressed hardware model checking of
finite-state systems, MoXI is extensible by design. Future research directions
include further extending MoXI representations to infinite-state model checking,
investigating efficient representations for highly-expressive high-level modeling
languages, and even exploring the uses of MoXI for applications in software
model checking.10

References

1. The AIGER and-inverter graph (AIG) format version 20071012. http://fmv.jku.
at/aiger/FORMAT, accessed: 2016-07-25

2. AIGER 1.9 and beyond. http://fmv.jku.at/hwmcc11/beyond1.pdf, accessed:
2016-07-25

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (Edinburgh, UK) (2010)

4. Beer, I., Ben-David, S., Eisner, C., Landver, A.: Rulebase: An industry-oriented
formal verification tool. In: Design Automation Conference. pp. 655–660. IEEE
Computer Society (1996)

5. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking Without
BDDs. In: Proceedings of the 5th International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems. pp. 193–207. TACAS, Springer-
Verlag, Berlin, Heidelberg (1999), http://dl.acm.org/citation.cfm?id=646483.
691738

6. Biere, A., Froleyks, N., Preiner, M.: Hardware Model Checking Competition
(HWMCC). https://fmv.jku.at/hwmcc20/index.html (2020)

7. Bozzano, M., Cimatti, A., Fernandes Pires, A., Jones, D., Kimberly, G., Petri,
T., Robinson, R., Tonetta, S.: Formal design and safety analysis of AIR6110 wheel
brake system. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV. pp. 518–535. Springer
(2015)

8. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: The
COMPASS approach: Correctness, Modelling, and Performability of Aerospace
Systems. In: Computer Safety, Reliability, and Security, pp. 173–186. Springer
(2009)

9. Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: VMCAI. pp.
70–87 (2011)

10. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: International Conference on Computer Aided Verification. pp. 24–40.
Springer (2010)

11. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language
for programming synchronous systems. In: Proc. 14tj Annual ACM Symposium on
Principles of Programming Languages. pp. 178–188 (1987)

12. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) Proc. 26th Int. Conf. on Computer Aided Verification. Lecture
Notes in Computer Science, vol. 8559, pp. 334–342. Springer (2014)

10 Thanks to Dirk Beyer for initial ideas in this direction.

http://fmv.jku.at/aiger/FORMAT
http://fmv.jku.at/aiger/FORMAT
http://fmv.jku.at/hwmcc11/beyond1.pdf
http://dl.acm.org/citation.cfm?id=646483.691738
http://dl.acm.org/citation.cfm?id=646483.691738
https://fmv.jku.at/hwmcc20/index.html

18 K. Y. Rozier et al.

13. Choi, Y., Heimdahl, M.: Model checking software requirement specifications using
domain reduction abstraction. In: IEEE ASE. pp. 314–317 (2003)

14. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model
checking. In: CAV, Proc. 14th Int’l Conf. pp. 359–364. LNCS 2404, Springer (2002)

15. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Ic3 modulo theories via implicit
predicate abstraction. In: Tools and Algorithms for the Construction and Analy-
sis of Systems: 20th International Conference, TACAS 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014. Proceedings 20. pp. 46–61. Springer (2014)

16. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: TACAS. pp. 93–107 (2013)

17. Colaço, J.L., Pagano, B., Pouzet, M.: Scade 6: A formal language for embedded
critical software development. In: 2017 International Symposium on Theoretical
Aspects of Software Engineering (TASE). pp. 1–11. IEEE (2017)

18. Courant, N., Séré, A., Shankar, N.: The correctness of a code generator for a
functional language. In: Beyer, D., Zufferey, D. (eds.) Verification, Model Checking,
and Abstract Interpretation - 21st International Conference, VMCAI 2020, New
Orleans, LA, USA, January 16-21, 2020, Proceedings. Lecture Notes in Computer
Science, vol. 11990, pp. 68–89. Springer (2020). https://doi.org/10.1007/978-3-030-
39322-9_4, https://doi.org/10.1007/978-3-030-39322-9_4

19. Documentation, S.: Simulation and model-based design (2020), https://www.
mathworks.com/products/simulink.html

20. Documentation, SCADE: Ansys SCADE Suite (2023), https://www.ansys.com/
products/embedded-software/ansys-scade-suite

21. Dureja, R., Rozier, E.W.D., Rozier, K.Y.: A case study in safety, security, and
availability of wireless-enabled aircraft communication networks. In: Proceedings
of te 17th AIAA Aviation Technology, Integration, and Operations Conference
(AVIATION). American Institute of Aeronautics and Astronautics (June 2017).
https://doi.org/http://dx.doi.org/10.2514/6.2017-3112

22. Dureja, R., Rozier, K.Y.: FuseIC3: An algorithm for checking large design
spaces. In: Proceedings of Formal Methods in Computer-Aided Design (FMCAD).
IEEE/ACM, Vienna, Austria (October 2017)

23. Dutertre, B.: Yices 2.2. In: International Conference on Computer Aided Verifica-
tion. pp. 737–744. Springer (2014)

24. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property di-
rected reachability. In: FMCAD. pp. 125–134 (2011)

25. Eén, N., Sörensson, N.: Temporal induction by incremental sat solving. Electronic
Notes in Theoretical Computer Science 89(4), 543–560 (2003)

26. Férey, G., Shankar, N.: Code generation using a formal model of reference
counting. In: Rayadurgam, S., Tkachuk, O. (eds.) NASA Formal Methods:
8th International Symposium, NFM 2016, Minneapolis, MN, USA, June 7-
9, 2016, Proceedings. pp. 150–165. Springer International Publishing, Cham
(2016). https://doi.org/10.1007/978-3-319-40648-0_12, http://dx.doi.org/10.
1007/978-3-319-40648-0_12

27. Gan, X., Dubrovin, J., Heljanko, K.: A symbolic model checking approach to veri-
fying satellite onboard software. Science of Computer Programming (2013) (March
2013), http://dx.doi.org/10.1016/j.scico.2013.03.005

28. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model check-
ing at scale: Automated air traffic control design space exploration. In: Pro-
ceedings of 28th International Conference on Computer Aided Verification (CAV

https://doi.org/10.1007/978-3-030-39322-9_4
https://doi.org/10.1007/978-3-030-39322-9_4
https://doi.org/10.1007/978-3-030-39322-9_4
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://doi.org/http://dx.doi.org/10.2514/6.2017-3112
https://doi.org/10.1007/978-3-319-40648-0_12
http://dx.doi.org/10.1007/978-3-319-40648-0_12
http://dx.doi.org/10.1007/978-3-319-40648-0_12
http://dx.doi.org/10.1016/j.scico.2013.03.005

MoXI: An Intermediate Language for Symbolic Model Checking 19

2016). LNCS, vol. 9780, pp. 3–22. Springer, Toronto, ON, Canada (July 2016).
https://doi.org/10.1007/978-3-319-41540-6_1

29. Goel, A., Sakallah, K.: Model checking of verilog rtl using ic3 with syntax-guided
abstraction. In: NASA Formal Methods: 11th International Symposium, NFM
2019, Houston, TX, USA, May 7–9, 2019, Proceedings 11. pp. 166–185. Springer
(2019)

30. Goel, A., Sakallah, K.: Avr: abstractly verifying reachability. In: Tools and Algo-
rithms for the Construction and Analysis of Systems: 26th International Confer-
ence, TACAS 2020, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020, Pro-
ceedings, Part I 26. pp. 413–422. Springer (2020)

31. Gribaudo, M., Horvath, A., Bobbio, A., Tronci, E., Ciancamerla, E., Minichino,
M.: Model-checking based on fluid Petri nets for the temperature control system
of the ICARO co-generative plant. Tech. rep., SAFECOMP, 2434, LNCS (2002)

32. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley (2003)

33. IEEE: IEEE standard multivalue logic system for VHDL model interoperability
(Std_logic_1164) (1993)

34. IEEE: IEEE standard for Verilog hardware description language (2005)
35. IEEE: IEEE standard for VHDL language reference manual (2019)
36. Jahier, E., Raymond, P., Halbwachs, N.: The lustre v6 reference manual. Verimag,

Grenoble, Dec (2016)
37. Johannsen, C., Nukala, K., Dureja, R., Irfan, A., Shankar, N., Tinelli, C., Vardi,

M.Y., Rozier, K.Y.: Symbolic Model-Checking Intermediate-Language Tool Suite.
In: Proceedings of 36th International Conference on Computer Aided Verification
(CAV). LNCS, Springer (July 2024)

38. Lahtinen, J., Valkonen, J., Björkman, K., Frits, J., Niemelä, I., Heljanko, K.:
Model checking of safety-critical software in the nuclear engineering domain.
Reliability Engineering & System Safety 105(0), 104–113 (2012), http://www.
sciencedirect.com/science/article/pii/S0951832012000555

39. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

40. Mann, M., Irfan, A., Lonsing, F., Yang, Y., Zhang, H., Brown, K., Gupta, A., Bar-
rett, C.: Pono: a flexible and extensible SMT-based model checker. In: Computer
Aided Verification: 33rd International Conference, CAV 2021, Virtual Event, July
20–23, 2021, Proceedings, Part II 33. pp. 461–474. Springer (2021)

41. Mattarei, C., Cimatti, A., Gario, M., Tonetta, S., Rozier, K.Y.: Comparing different
functional allocations in automated air traffic control design. In: Proceedings of
Formal Methods in Computer-Aided Design (FMCAD 2015). IEEE/ACM, Austin,
Texas, U.S.A (September 2015)

42. McMillan, K.: The SMV language. Tech. rep., Cadence Berkeley Lab (1999)
43. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
44. Miller, S.: Will this be formal? In: TPHOLs 5170, pp. 6–11. Springer (2008), http:

//dx.doi.org/10.1007/978-3-540-71067-7_2
45. Miller, S.P., Tribble, A.C., Whalen, M.W., Per, M., Heimdahl, E.: Proving the

shalls. STTT 8(4-5), 303–319 (2006)
46. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC, and Boolector

3.0. In: Proc. 30th Int. Conf. on Computer Aided Verification. Lecture Notes in
Computer Science, vol. 10981, pp. 587–595. Springer (2018)

47. The nuXmv model checker; available at https://nuxmv.fbk.eu/, 2015

https://doi.org/10.1007/978-3-319-41540-6_1
http://www.sciencedirect.com/science/article/pii/S0951832012000555
http://www.sciencedirect.com/science/article/pii/S0951832012000555
http://dx.doi.org/10.1007/978-3-540-71067-7_2
http://dx.doi.org/10.1007/978-3-540-71067-7_2
https://nuxmv.fbk.eu/

20 K. Y. Rozier et al.

48. R. Cavada, A.C., Jochim, C., Keighren, G., Olivetti, E., Pistore, M., Roveri, M.,
Tchaltsev, A.: NuSMV 2.4 user manual. Tech. rep., CMU/ITC-irst (2005)

49. Raimondi, F., Lomuscio, A., Sergot, M.J.: Towards model checking interpreted
systems. In: FAABS 02, LNAI 2699. pp. 115–125. Springer (2002)

50. Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for LTL symbolic satisfia-
bility checking. In: 17th International Symposium on Formal Methods (FM2011).
Lecture Notes in Computer Science (LNCS), vol. 6664, pp. 417–431. Springer-
Verlag (2011)

51. Rozier, K.Y.: Specification: The biggest bottleneck in formal methods and auton-
omy. In: Proceedings of 8th Working Conference on Verified Software: Theories,
Tools, and Experiments (VSTTE 2016). LNCS, vol. 9971, pp. 1–19. Springer-
Verlag, Toronto, ON, Canada (July 2016). https://doi.org/10.1007/978-3-319-
48869-1_2

52. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction
and a sat-solver. In: Proc. 3rd Int’l Conf. on Formal Methods in Computer-Aided
Design. Lecture Notes in Computer Science, vol. 1954, pp. 108–125. Springer (2000)

53. SMTLib. https://smtlib.cs.uiowa.edu/
54. Tribble, A., Miller, S.: Software safety analysis of a flight management system

vertical navigation function-a status report. In: DASC. pp. 1.B.1–1.1–9 v1 (2003)
55. Yoo, J., Jee, E., Cha, S.: Formal modeling and verification of safety-critical soft-

ware. Software, IEEE 26(3), 42–49 (2009)
56. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination

protocol for an automated air traffic control system. In: Proceedings of the 12th
International Workshop on Automated Verification of Critical Systems (AVoCS
2012). Electronic Communications of the EASST, vol. 53, pp. 337–353. European
Association of Software Science and Technology (2012)

57. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination
protocol for an automated air traffic control system. Science of Computer Pro-
gramming Journal 96(3), 337–353 (December 2014)

https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1007/978-3-319-48869-1_2
https://smtlib.cs.uiowa.edu/

	 MoXI: An Intermediate Language for Symbolic Model Checking

