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Abstract. Nowadays, powerful parallel SAT solvers are based on an algorithm
portfolio. The alternative approach, (iterative) search space partitioning, cannot keep
up, although, according to the literature, iterative partitioning systems should scale
better than portfolio solvers. In this paper we identify key problems in current paral-
lel cooperative SAT solving approaches, most importantly communication, how to
partition the search space, and how to utilize the sequential search engine. First, we
improve on each problem separately. In a further step, we show that combining all
the improvements leads to a state-of-the-art parallel SAT solver, which does not use
the portfolio approach, but instead relies on iterative partitioning. The experimen-
tal evaluation of this system completely changes the picture about the performance
of search space partitioning SAT solvers: on instances of a combined benchmark
of recent SAT competitions, the presented approach can keep up with the winners
of last years SAT competition. The combined improvements improve the existing
cooperative solver SPLITTER by 24%: instead of 561 out of 880 instances, the new
solver PCASSO can solve 696 instances.

1 Introduction
Many practical problems could be sped up by utilizing massively parallel hardware,

for example by utilizing the GPGPU. Especially for problems with local calculations these
execution units are beneficial (e.g. [1,2]). For more complex problems, for instance the
satisfiability testing problem [3] whose complexity is NP , only a few massively parallel
solutions have been proposed – yet not suitable to cope with neither modern sequential
CDCL solvers, nor with the high complexity of current application formulas [4]. The pre-
sented results consider only 3SAT with 100 variables – a size being easily solved by mod-
ern sequential SLS solvers. Still, there exists the interest in improving the performance of
SAT solving, and parallel approaches have not yet been exhaustively explored.

With the goal of having a massively parallel SAT solver in mind, we go a step back-
wards from GPGPUs to multi-core CPUs. Nowadays, a usual CPU ships with four cores,
and high performance computing CPUs already contain up to 16 cores, which should
be exploited for solving SAT. For these architectures, many solutions to execute paral-
lel solvers have been proposed. The latest generation of these solvers, namely portfolio
solvers, has been introduced with MANYSAT [5], a solver that runs several configurations
of a single solving engine in parallel, and which is based on a modern sequential solving
engine. These incarnations of the solving engine all solve the same input instance, and ad-
ditionally share clauses, that have been learned during their search process. Much research
has been done on this type of solvers, for example investigating the properties of clause
sharing [6,7], or whether additional information sharing could improve the performance
of the parallel SAT solver [6,8]. However, there also exist parallel portfolio solvers that



simply combine many solvers with the aim to have a specialized solver for each category
of instances, such that the overall portfolio provides a good performance [9].

An alternative approach to solve SAT in parallel is to partition the search space of the
input formula, and then solve partitions in parallel. Recently, there has been less research
on this field, especially for the multi core platform. Within the past five years, there have
been only a few parallel search space splitting solvers: CUBEANDCONQUER [10,11],
and SPLITTER [12]1. A reason for this situation might be the following: In [13] it has
been shown that when partitioning an input formula, and solving only the partitions in
parallel but not considering the input formula itself, the overall run time of the parallel
solver can be higher than when solving the input formula with a sequential solver. We
refer to this splitting scheme as plain partitioning. When a solver incarnation proved the
unsatisfiability of a partition, it simply continues by solving another partition, assuming
that sufficiently many partitions have been provided. The first solver CUBEANDCON-
QUER follows this scheme. Another approach is to consider the input formula as well,
and provide less partitions. Then, we solve the input formula and the partitions in paral-
lel. As soon as we have another free solver incarnation, we assign a remaining partition
to that solver. If no more partitions are present, we divide the search space of a parti-
tion into further partitions, where each of them is ready to be assigned to new solvers
again. This solving scheme has been introduced for solving SAT with grids computing,
and is referred to as iterative partitioning in the literature [13]. Most importantly, iterative
partitioning has been shown to be more powerful in the presence of more parallel execu-
tion units [13]. In contrast to this statement, the solver SPLITTER that uses this scheme
showed a poor performance in international competitions [14], even when adding an im-
proved clause sharing [15]. Currently, the performance gap between portfolio solvers and
search space splitting solvers is still huge, as the following table shows, both PLINGELING
and PENELOPE solve more instances and are faster than SPLITTER. The data of the table
has been created on a benchmark of application 880 instances originating from the SAT
competition 2009, the SAT Challenge 2012 and the hard unselected instances of the SAT
Challenge 2012. We executed the solvers on an 8 cores of an 16-core AMD Opteron 6274
with 2.2 GHz and 8 GB of memory. The time limit was set to 7200 seconds. In all the fol-
lowing tables we report the total number of solved instances (TOT), the number of solved
satisfiable (SAT) and unsatisfiable instances (UNSAT). Furthermore, we give the average
(Wall Time) and the median wall clock time (Median Time) for the whole benchmark,
as well as the Par10 score, which takes the mean of the sum the wall time for all solved
instances and ten times the timeout for each unsolved instance.

Solver TOT SAT UNSAT Wall Time Median Time PAR10

PENELOPE 704 304 400 305.649 89.39 14645
PLINGELING 672 296 376 663.526 442.28 17525
SPLITTER 561 292 269 450.126 366.42 26387

In this paper we analyze the decision choices made in SPLITTER, and try to improve the
system, such that the results of the implementation are in line with the theoretical scal-
ability results. As the above table indicates, this can be achieved mainly by improving
the performance on unsatisfiable instances, where the gap to PENELOPE is 131 instances.

1 The are other parallel SAT solvers that support search space splitting, for example CLASP or
PMINISAT – however, no detailed results have been reported on these systems.
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For this, we focused on the following aspects: (i) how to partition the input formula, (ii)
how to share learned clauses among partitions, (iii) how to initialize solving engines, (iv)
how to solve partitions, (v) how to perform extra communication among solving engines,
and finally (vi) how to treat special situations that may arise in iterative partitioning. For
each point we first analyze the decisions made in SPLITTER, and then try to identify
weaknesses, propose improvements and finally evaluate the performance of the proposed
modification on a large benchmark of application instances used or submitted to recent
SAT competitions. We implemented all modifications into another system called PCASSO,
which is an acronym of Parallel, CooperAtive Sat SOlver. When comparing SPLITTER
with PCASSO, our evaluation shows a performance improvement of 24%. Furthermore,
PCASSO now can keep up with PENELOPE, the best single engine parallel SAT solver of
last years competition. The results of our work prove that search space partitioning SAT
solvers are relevant, and supported by theoretical results [13], should be considered as
promising candidates for solving SAT on future massively parallel computing architec-
tures.

2 Preliminaries
We assume a fixed set V of Boolean variables, or briefly just variables or atoms.

A literal is a variable x (positive literal) or a negated variable x (negative literal). We
overload the overbar notation: the complement l of a positive (negative, resp.) literal l is
the negative (positive, resp.) literal with the same variable as l. A clause is a finite set of
literals, a formula in conjunctive normal form is a finite set of clauses. An interpretation
is a mapping from the set V of all Boolean variables to the set {>,⊥} of truth values.
In the following, we assume the reader to be familiar with propositional logic, and how
propositional formulas are evaluated under interpretations. More details can be found
in [16]. A clause that contains exactly a single literal is called a unit clause. If x is a
Boolean variable and C = x ∨ C ′ as well as D = x ∨ D′ are clauses, then the clause
C ′∨D′ is called the resolvent ofC andD upon x. The SAT problem is to answer whether a
given formula F is satisfiable. Since [3], SAT is known to be in the complexity classNP .

3 Sequential SAT Solving
For showing the satisfiability or unsatisfiability of formulas that originate from appli-

cations, currently the conflict driven clause learning (CDCL) algorithm [17] shows the
best performance. In principle, this algorithm follows the tree search of the well known
DPLL algorithm [18], but it treats conflicts differently. Similar to DPLL, if the deduction
of the solver, unit propagation, reached a fix point, a search step (decision) is performed,
so that deduction can be applied again. However, if unit propagation reveals a conflict,
which represents that the current sub-tree does not contain a solution, a learned clause is
generated by resolution [17]. This learned clause is used to partially undo the current path
and to continue search from this point by propagation. The search is stopped if either a
satisfying interpretation has been found, or if the learned clause is the empty clause. In
the latter case, the formula is found to be unsatisfiable.

Modern CDCL solvers are enhanced with advanced heuristics. First, the decision
heuristic prefers variables, which have been used in the derivation of recent learned
clauses [19], by maintaining an activity per variable. The polarity to branch on is deter-
mined by using the phase-saving scheme [20]. Furthermore, learned clauses are main-
tained, and after some time also removed again, where heuristics answer the follow-
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ing questions: (i) when to remove learned clauses, and (ii) which learned clauses to
remove. For (i) several schedules have been proposed (e.g. [21,22]). For (ii), learned
clauses are augmented with measures, for example an activity [21], or the literal block dis-
tance(LBD) [22]. In addition, the search process is restarted resetting the current partial
interpretation [23]. Again, different restart policies have been proposed [24,21,25,26,27].
More details about state-of-the-art SAT solving with the CDCL algorithm can be found
in [28].

4 Parallel SAT Solving
Parallel SAT solvers can be divided into two families: cooperative approaches, where

the search space is partitioned and each partition is assigned to a solver incarnation and
competitive approaches, where instead each solver incarnation is fed with the same for-
mula. Current state-of-the-art is represented by competitive approaches, also known as
portfolio procedures, whereas cooperative approaches, also known as search space parti-
tioning procedures, were quite popular in the past. Since we focus on search space parti-
tioning procedures, we will discuss the portfolio approach only briefly. A more detailed
survey on parallel SAT solving is given in [29,30].

4.1 Solving SAT with the Portfolio Approach

In the portfolio approach, several solvers solve the same formula in parallel. A nice
property of this approach is that the parallel search can be terminated as soon as one
solver incarnation found a solution. This property motivates combining special solvers for
formulas from special categories to a portfolio solver, which then solves a given formula
in the time required by the fastest sequential component solver. Among portfolio systems,
different sub approaches arose, mainly differing in the way of which solving engines
are used and how complex the communication among these engines is: portfolio solvers
in recent competitions like PPFOLIO [9] and PFOLIOUZK [31] simply execute several
powerful SAT solvers in parallel, even scheduled on a sequential machine.

A more sophisticated portfolio approach uses a single solving engine and executes
multiple incarnations with different configurations in parallel (e.g. MANYSAT [5] or
PENELOPE [32]). In this approach, learned clauses can be easily shared among the in-
carnations. Knowledge sharing enables the portfolio solver to solve a formula even faster
than the best sequential incarnation, because the search of this best incarnation is en-
hanced with shared clauses that cut off search space. MANYSAT [5], winner of the
SAT Competition 2009 in parallel SAT solver track, shares clauses of up to size eight,
and PENELOPE [7], runner-up of the SAT Challenge 2012 in parallel SAT solver track,
shares clauses of LBD value up to eight, and PLINGELING [8], winner of the parallel SAT
solver track of the SAT Race 2010 and SAT Competition 2011, shares only unit clauses
and literal equivalences. Surprisingly, the portfolio solver PFOLIOUZK [31], winner of
SAT Challenge 2012 in the parallel SAT solver track, does not share any clause. Even
more communication to these single engine portfolio solvers has been introduced with
the PLINGELING system [8]. Its solving engine LINGELING applies simplification tech-
niques during search, and thus knowledge about equivalent literals can be shared.

There exists much research on portfolio solvers, most prominently on sharing infor-
mation among solving incarnations. First, a static sharing limit for the size of shared
clauses has been introduced [5], which has been replaced by a dynamic quality-based
filter [33]. Furthermore, not only the size of the clause, but also its LBD has been taken
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Fig. 1. The tree shows how a formula can be partitioned iteratively by using a partitioning
function that creates two child formulae.

into account for sharing clauses [32]. Finally, not only learned clauses, but also active
variables and other information has been shared [6,8]. A discussion about the soundness
of clause sharing is presented in [34].

4.2 Solving SAT with the Search Space Partitioning Approach

4.2.1 Creating Partitions Partitions in cooperative SAT solvers are created through
partition functions, where a partition function is a function φ such that, given a formula F
and a natural number n ∈ N+, φ(F, n) := (F1, . . . , Fn), where F ≡ F1 ∨ . . . ∨ Fn and
each pair of partitions is disjoint: i 6= j ∈ [1, n], Fi ∧ Fj |= ⊥. Without loss of general-
ity we assume that partitions F1, . . . , Fn are always of the form F ∧K1, . . . , F ∧Kn,
where K1, . . . ,Kn are sets of clauses, called partitioning constraints. By iteratively ap-
plying the partition function to a formula F , a partition tree like the one in Figure 1 is
produced. Nodes in the partition tree are tagged with their positions: the root node F is
tagged with the empty position ε; the i-th successor (from left to right) of a node F p at
position p is the node F pi. Please notice that, as positions are strings, the standard prefix
relation among strings (<) is defined for positions as well.

Partitions in SPLITTER and PCASSO are created through scattering [35]. The idea
is to define each partitioning constraint as conjunctions of cubes [10], where a cube is
a formula Q := {C1, . . . , Ck} such that |Ci| = 1, for each 1 ≤ i ≤ k and k ≥ 1.
Observe that the negation of a cube Q := {{l1}, . . . , {lk}} is the clause {l1, . . . , lk}.
More precisely, given a formula F0 and an integer n, n partitions F1, . . . , Fn are created
by using n−1 cubesQ1, . . . , Qn−1 and applying them according to the following schema:

F1 := F0 ∧ Q1; Fm+1 := F0 ∧ (
m∧
i=1

Qi) ∧ Qm+1(1 ≤ m < n − 1); and finally Fn :=

F0 ∧
n−1∧
i=1

Qi.

4.2.2 Solving Partitions Hyvärinen [36] identifies two strategies for solving nodes in
the partition tree: plain partitioning and iterative partitioning, where the latter is a hybrid
that combines the competetive and cooperative approach. To describe the node-state of a
node F p at a certain point of execution we use a triple (F p, s, r) where s ∈ {>,⊥, ?}
(> indicates that an incarnation found a model for the node, whereas ⊥ indicates that an
incarnation proved unsatisfiability of F p; finally, ? indicates that the node has not been
solved yet) and r ∈ {I,�} (indicating whether an incarnation is running on F p or not,
respectively). Given the notion of a node-state, we can easily differentiate between plain
partitioning and iterative partitioning: a cooperative solver exploits the iterative partition-
ing strategy if two incarnations are allowed to run at the same time on nodes F p, F q such
that p ≤ q. Otherwise, the solver is said to be exploiting the plain partitioning strategy.
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Fig. 2. Visualization of a partition tree with clause sharing and overlapped solving: The
dashed lines show the possible ways flag-based sharing can send clauses. The dotted lines
represent the possible additional communication when position based sharing is used.
From this picture it can be seen that more clauses could be shared.

More informally, plain partitioning solves only the leaf nodes of the partition tree, whereas
iterative partitioning processes all nodes in the search tree in a breadth first order.

In the authors’ opinion these names are misleading since, for both strategies, the par-
titioning is fixed, and the difference relies instead in the order in which nodes are solved.
We thus propose to rename iterative partitioning to overlapped solving, as it permits the
parallel solver to look at overlapping partitions of the search space at the same time. Ac-
cordingly, plain partitioning will be called non-overlapped solving.

In each cooperative solver, in order to solve an unsatisfiable node F p, either F p has to
be directly solved by some incarnation or each child node F pi has to be solved. Hyvärinen
shows in [13] that solving each of these children can be more expensive (in terms of
required time) than solving the father node directly. A consequence of this fact is that
overlapped solving is superior to non-overlapped solving; this claim is formally proved
in [36].

4.2.3 Sharing Information Among Partitions A recent empirical study [37] shows
that clause learning is the most important feature of modern SAT solvers. Most of the
current portfolio solvers share learned clauses among the incarnations. This sharing of
learned clauses shows improvements in portfolio solvers, because a learned clause can
prune parts of a search space of the incarnation. An important question in sharing learned
clauses is: which clauses are good for sharing? There is no general successful answer to
this question, but different portfolio solvers use different heuristics (see Section 4.1).

In the overlapped solving, we cannot share each learned clause with every incarna-
tion, because partitioning constraints can contribute to the learning of a clause, and so
the clause cannot always be a logical consequence of partition formulas solved by other
incarnations. The first approach for sharing clauses in the iterative partitioning is given
in [38], this clause sharing approach is called flag-based learned clause tagging.

A learned clause is considered unsafe if it belongs to partitioning constraints, or it is
obtained by a resolution derivation involving one or more unsafe clauses. A clause that
is not unsafe is called safe clause, and only safe clauses are shared. Sharing in the over-
lapped solving has been further improved by position-based clause tagging [15]. The idea
of safe and unsafe clause is extended to sub-partition trees: a learned clause is shared in
a sub-partition tree if it is safe in that sub-partition tree. This information can be calcu-
lated by tagging each clause Cp with the position p of the sub-tree where Cp is valid.
With position-based clause sharing an increased number of shared clauses and a better
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performance when compared against non-sharing or flag-based have been reported [15].
For PCASSO, we therefore decided to exploit position-based clause sharing.

5 Analyzing and Improving Cooperative SAT Solving
In this section we will analyze design decisions of SPLITTER one by one – next, sug-

gesting modifications to the procedure, and finally give an empirical evaluation. There-
fore, we implemented the parallel search space splitting solver PCASSO, which is based
on a MINISAT-style solving engine2. Evaluation is performed using an AMD Opteron
6274 with 2.2 GHz and 8 GB of memory. We evaluate the solvers on 8 cores. For each
formula of the benchmark, we apply a wall clock timeout of 2 hours. The full benchmark
to compare parallel solvers consists of 880 instances, originating from the application
track of the SAT 2009 competition, as well as the SAT 2012 Challenge. Furthermore, we
added the instances that have not been selected for the SAT 2012 Challenge. However, for
the development of the single design improvements, we choose a subset of 118 instances
where 66 could be solved by SPLITTER, 34 can be solved by PENELOPE only and the
remaining instances cannot be solved by both systems. During the development phase
(Section 5.1–5.3.6), we tested the performance of PCASSO only on these 118 instances.
Furthermore, note that the results presented in the following paragraphs cannot be related
to each other directly, since the implementation of the system grew while developing and
applying the improvements. For the results presented in one table, all parameters of the
solver are fixed and only a single other parameter has been modified, as we indicate in the
tables3.

5.1 Creating Partitions
In our experiments, we have observed that scattering creates partitions for a given

node using cubes such that there are common variables among the cubes. We now define
tabu scattering as an extension of scattering, by putting a restriction that a variable used
in one cube, must not be used in the cubes for creating remaining partitions. Using tabu
scattering, we diversify the search more.

Another observation is that scattering does not always create partitions that have equal
difficulty in terms of solving time. Due to this difference, consider a scenario that the
solver has some idle resources, so the solver creates partitions of some running unsolved
node (F p, ?,I) in the partition tree, but it may happen that (F p, ?,I) is very close to
find the result ⊥ and thus the solver may waste resources on the newly created partitions.
We propose a solution to decrease the chance of this scenario to happen, by sorting the
child nodes in decreasing order of difficulty level; this way the solver will create parti-
tions of more difficult node first than the less difficult nodes, avoiding the above scenario.
We predict the difficulty level of a node by a simple heuristic that counts the number of
propagated literals: the higher the number of top level units after propagation, the lower
the estimated difficulty of the analyzed formula.

SPLITTER chooses the literals in the cubes by using VSIDS heuristic: it runs a solver
for a certain number of conflicts (8196 conflicts) and picks the literals with highest VSIDS
score and their saved polarity. Then, it creates the partition, adds the negated cube to the
current formula and repeats the process until enough partitions are created. In PCASSO,
we use lookahead techniques [39] for choosing the literals for creating partitions with

2 The latest version uses GLUCOSE 2.2
3 PCASSO is available at http://tools.computational-logic.org.
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scattering, by choosing a variable with the maximum mixdiff score [39]. The score mixdiff
of a variable is the product of the diff score of each polarity of the variable. We calculate
the diff score of the polarity of a variable by applying lookahead, and use the following
weighted sum: 0.3 times the number of propagated literals plus 0.7 times the number
of newly created binary clauses. After choosing the variable with the maximum mixdiff
score, we choose the polarity of the variable that has the lowest diff score for creating
cubes. We also use the reasoning techniques: failed literals, necessary assignments, pure
literals, and add learned clauses to the partition constraints. Techniques like constraint re-
solvent, double lookahead, and adaptive pre-selection heuristics are also used as proposed
in the literature [39]. It is the first time that lookahead and scattering is combined for cre-
ating partitions. Previously lookahead has already been used in CUBEANDCONQUER for
creating partitions, but without scattering [10,11].

TOT SAT UNSAT Wall Time Median Time PAR10

VSIDS 57 23 34 1319.43 7200 37857
LA 73 22 51 1135.43 1849.05 28160

The data clearly shows that combining look-ahead with scattering is superior to choosing
variables by VSIDS, 37.7%‘ more instances can be solved, and the median run time drops
significantly.

5.2 Solving Time Limit
SPLITTER uses a solving time limit for each node in the partition tree, proposed in [36]

for grid environment. Here we propose a different strategy: we do not put any limit on the
solving time for each node. To give the intuition about our idea, we first define the ideal
solving time limit: a solving time limit is ideal if the given CNF formula is solved within
that limit. Given an unsatisfiable CNF formula that we solve with overlapped solving, a
void partition function (i.e. a partitioning that does not partition the problem in “simpler”
problems) and a non-ideal solving time limit then overlapped solving slowly becomes
similar to non-overlapped solving, because intermediate nodes are interrupted before they
can be solved. By over-approximating the ideal limit, we overcome this problem.

NODE LIMIT TOT SAT UNSAT Wall Time Median Time PAR10

512000 73 22 51 1135.43 1849.05 28160
NONE 86 25 61 1177.48 1101.68 20346

When comparing solving with and without limits, it can be seen that the performance
of the solver increases heavily, especially on unsatisfiable instances. Furthermore, the
median run time drops, indicating that the limited solving also aborts incarnations just
before they solve their node.

5.3 Diversification and Intensification
A search strategy in a modern SAT solver uses the following components: decision

heuristic, polarity heuristic, restart policy, and learning scheme. Diversification vs inten-
sification is a trade-off made by the search strategy. Intensification refers to search strate-
gies with the goal to greedily improve the chances of finding a solution. Diversification
strategies try to achieve a reasonable coverage of the search space. For further reading,
we refer to [40].

8



5.3.1 Sharing VSIDS and Progress Saving We intensify the search by sharing infor-
mation. First, we look into sharing VSIDS and progress saving information. Portfolio
solvers do not share this information, because all incarnations start their search at the
same time; but in case of our solver, we have a tree structure (partition tree) that we can
exploit, and also the search of the nodes in the partition tree does not start at the same
time. Thus, sharing heuristic information like VSIDS and progress saving from parent to
child nodes, could help the child nodes. When PCASSO starts solving, the root node and
the nodes at the partition tree level one start at almost the same time. The nodes at parti-
tion tree level greater than one are usually created after some time, so we initialize their
search process with the VSIDS and progress saving information of their parent, because
the child node searches in the sub-search space of its parent and whatever is learned by
the parents search can help the solving child node as well.

TOT SAT UNSAT Wall Time Median Time PAR10

NONE 91 25 66 893.724 594.675 17163
ACTIVITY 92 26 66 867.278 508.19 16540
POLARITY 93 27 66 895.846 619.85 15960
BOTH 92 26 66 870.25 593.575 16542

When sharing information, the performance of the solver increases – however, not sharing
the activity information seems to provide a slightly more powerful, but also slower..

5.3.2 Dynamic Sharing Learned clauses are shared between incarnations to intensify
the search. Most parallel solvers use a static measure for sharing clauses. SPLITTER shares
only binary clauses [15]. We propose a dynamic learned clause sharing scheme, that is
based on LBD scores. A learned clause is eligible for sharing by an incarnation if the
LBD score of this clause is lower than a parameter δ of the global LBD average of the
incarnation. In PCASSO, we use δ = 0.5.

SHARE LIMIT TOT SAT UNSAT Wall Time Median Time PAR10

DYNAMIC 0.5 95 27 68 765.479 467.98 14650
STATIC 6 94 26 68 896.848 506.575 15358

As indicated in related work already, the dynamic limit is superior with respect to the run
time of the solver. However, in PCASSO the number of solved instances is not influenced
much.

5.3.3 Different Restarts Portfolio solvers like MANYSAT and PENELOPE, use dif-
ferent restart policies for each incarnation, to diversify the search. Inspired by this idea,
we diversify by using different restart policy parameters in PCASSO. As PCASSO uses
GLUCOSE, the dynamic restart policy in GLUCOSE [41] can be modified to diversify the
search of PCASSO as well. GLUCOSE maintains a global average of LBD scores. A restart
is performed if the average LBD score of the last X learned clauses is greater than the
global average times a magic constant K. First we classify the nodes in partition tree into
three categories: (i) root node: the node at the root of the partition tree, (ii) leaf node: the
nodes which do not have any child node, (iii) middle node: the node which is neither a
root node nor a leaf node. According to these node categories, we apply different restart
policies. The root node uses X = 75 and K = 0.7. Leaf nodes use X = 50 and K = 0.8.
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Fig. 3. The given snapshot shows the only child scenario for four computation units: for
each node, only a single child is still unsolved, and all other nodes are evaluated to ⊥.

Parent nodes use X = 75 and K = 0.8. We have selected the values of X and K based
on experiments and the data provided in [41].

TOT SAT UNSAT Wall Time Median Time PAR10

SAME 89 27 62 792.393 673.405 18292
DIFFERENT 92 26 66 870.25 593.575 16542

As provided by the empirical data, diversifying restart strategies helps to improve the
performance on unsatisfiable instances. Furthermore, the solving time improves.

5.3.4 Different Learnt Clauses Cleaning To diversify, PENELOPE uses different in-
tervals between cleaning learned clauses for different incarnations. The purpose is that
some incarnations keep learned clauses for a longer time than others. We introduce this
idea in our solver, according to the node category as well. We give different cleaning in-
tervals to the root node, middle nodes, and leaf nodes. Let Introot, Intmiddle, Intleaf be
the cleaning intervals of the nodes root, parent, and leaf, respectively. Then we have the
following relationship: Introot ≷ Intmiddle ≷ Intleaf . Note that a leaf node changes its
cleaning policy dynamically when it becomes a middle node.

CLEAN INTERVAL TOT SAT UNSAT Wall Time Median Time PAR10

NONE 94 27 67 950.416 608.98 15401
DECREASE 93 24 69 1099.12 656.48 16120
INCREASE 92 26 66 870.25 593.575 16542

The default cleaning policy of GLUCOSE seems to be chosen well - however, when in-
creasing the interval, the median run time can be improved slightly. Surprisingly, the num-
ber of solved unsatisfiable instances can increase when using the modifications, whereas
the number of satisfiable instances decreases.

5.3.5 Only Child Scenario During our experiments we have observed, on some in-
stances, that the height of the partition tree grows until it hits the number of parallel
resources. This means that there is only one unsolved node at each partition level of the
partition tree. On a smaller scale, there could be only one unsolved node at some partition
level. For that reason, we call this scenario the only child scenario. Figure 3 shows an
extreme case of only child scenario for a solver with four available resources. You can see
that only one node is unsolved at each level of the partition tree, i.e. the nodes solving the
partitions F , F 2, F 21, F 213 are unsolved and running.
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Consider that only child scenario happens at some level of the partition tree, then there
are two cases: i) the parent node is looking into the search space which has been solved by
one of its children already, ii) the parent node is looking into the same search space where
its unsolved children are looking. In either case, we have the risk of doing redundant
work. We propose a approach to get out of this scenario by reintroducing the solving limit
in a node that has only one unsolved child (AVOID). To be on safe side, we do not apply
this limit for the root node. The introduced limit grows with the level of the node (level ∗
4096 conflicts). Since in the only child scenario all learned clauses can be shared among
the two participating nodes, we can also EXPLOIT this situation, by enabling this sharing.
In the extreme case, this configuration is very similar to portfolio solvers, since then all
clauses can be shared without restrictions.

TOT SAT UNSAT Wall Time Median Time PAR10

NONE 93 27 66 979.23 726.09 16026
AVOID 92 26 66 870.25 593.575 16542
EXPLOIT 91 26 65 856.31 607.335 17134

Although ignoring the scenario yields the best results wrt. solved instances, the run time
can be reduced significantly when either exploiting or avoiding the scenario, where avoid-
ing the scenario yields the better speedup.

5.3.6 Conflict Driven Node Killing When clauses are tagged by position-based tag-
ging [15] as described above, additional information can be obtained by performing a
conflict analysis on solved unsatisfiable nodes. Consider a node (F p,⊥,�), and let {}q
be the empty clause labeled with position q, which was derived by the incarnation that
solved F p. Then, from the main theorem in [15], we conclude that {}q is a semantic con-
sequence of the node of position q in the partition tree. Observe that q is a prefix p: q ≤ p.
Consequently, not only the node at position p can be marked as unsatisfiable, but also
the node F q as well as all its child nodes. As a result, more incarnations can terminated
and start solving different partitions. We call this kind of technique conflict driven node
killing. A similar approach is reported in [38] with assumption-based clause tagging, but
the author did not report benefits from exploiting this technique. Instead, our tests show
an improved performance in terms of the number of solved instances. However, similarly
to [38], we observe an increase of the median time. A reason for this might be the fact
that by stopping a node we prevent it from producing more shared clauses for its level and
above levels.

TOT SAT UNSAT Wall Time Median Time PAR10

CKILL 92 26 66 870.25 593.575 16542
NOCKILL 89 24 65 795.058 498.435 18294

5.4 Evaluation
We evaluate PLINGELING, PENELOPE, SPLITTER and PCASSO on the full bench-

mark of 880 instances, allowing each solver to use eight cores and a time limit of two
hours. The final configuration of PCASSO uses the following options: (i) tabu looka-
head for creating partitions, (ii) no solving limit, (iii) sharing vsids+polarity, (iv) dynamic
clause sharing 0.3, (v) different restarts, (vi) decrease clause cleaning interval w.r.t. level,
(vii) exploiting the only child scenario by simulating portfolio, and finally (viii) conflict
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Fig. 4. Comparing the performance of parallel state-of-the-art SAT solvers

driven node killing. The result is presented in the cactus plot in Figure 4. With this data, we
can validate our claim posted in the introduction: search space partitioning solvers have to
be considered being state of the art! The new solver PCASSO (696 instances) outperforms
PLINGELING (672 instances) on the benchmark, and is very close to PENELOPE (704 in-
stances). Furthermore, the median run time on all instances of PCASSO (136.17 seconds)
is close to PENELOPE (89.39 seconds). The contribution is not due to a single improve-
ment, but rather due to the sum of all improvements. Adding only a single improvement
of the above sections would not result in the presented performance of solving 135 more
instances than the latest search space splitting solver SPLITTER.

6 Conclusion
We started with the search space splitting solver SPLITTER, which shows a poor per-

formance especially on unsatisfiable instances compared to other parallel state-of-the-art
SAT solvers, such as PLINGELING or PENELOPE. We then analyzed the design decisions
of SPLITTER and proposed improvements, where some of them resulted in major im-
provements already. For example, we improved the partitioning by adding tabu informa-
tion and combining look-ahead and scattering, increasing the number of solved instances
by 37.7%, or we removed the solving limit per partition, which improves the performance
by another 17.8%. By improved information sharing about learned clauses, or the vari-
able phase, as well as diversifying the solver incarnations, or analyzing the unsat result for
partitions, we could improve the system further. Finally, we pointed out special situations
where iterative search space partitioning solvers come very close to portfolio solvers - a
situation we call the only child scenario. We implemented the improved algorithms into
the solver PCASSO, resulting in a state-of-the-art parallel SAT solver that does not rely on
search space splitting. Depending on how the only child scenario is handled, this solver
can also simulate portfolio systems.

By comparing the performance of PCASSO and PENELOPE, which solve a similar
amount of instances, and combining this empirical result with the theoretical and empir-
ical results of [13], we are convinced that search space partitioning is a good candidate
for solving SAT on more parallel computing architectures. As future work, we suggest to
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incorporate formula simplifications into the search engine, as well as using other recently
proposed additions like clause freezing. However, applying modifications to search space
splitting solvers will be more research intense than for portfolio systems, because any
modification of the solver incarnations has to consider the partitioning constraints.

Acknowledgement We thank ZIH of TU Dresden for providing generous capacity of par-
allel computation resources.
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