
Project

Search Space Partitioning
with Lookahead

Ahmed Irfan
12 November 2012

Technische Universität Dresden
Fakultät Informatik

Institut für Künstliche Intelligenz
Professur für Knowledge Representation and Reasoning

Supervised by:
Prof. Dr. rer. nat. Steffen Hölldobler
Dipl.-Inf. Norbert Manthey

Ahmed Irfan
Search Space Partitioning with Lookahead
Project, Fakultät für Informatik
Technische Universität Dresden, November 2012

Abstract. With technological shift from single core CPU to multi-core CPUs,
parallel SAT solving requires more attention than before. Portfolio and search
space partitioning are the two main approaches in parallel SAT solving. Search
space partitioning is further divided into plain search space partitioning and
iterative search space partitioning. In this work, I discuss the lookahead tech-
niques for iterative search space partitioning. I extend the work of [HM12b]
by implementing the lookahead techniques for partitioning and show that the
lookahead for iterative partitioning is better approach than the VSIDS. The
iterative partitioning with lookahead can solve application instances faster and
20 additional instances are solved in a given time limit of 3600 seconds. The
results are shown with the help of traditional statistical measures as well as
with a novel ranking method [VG11].

Contents
1. Introduction 6

2. Preliminaries and Notation 8
2.1. Propositional Logic . 8
2.2. Notation . 10

3. SAT Solving 11
3.1. Davis Putnam Logemann Loveland . 11
3.2. Conflict-Driven Clause Learning . 12
3.3. Lookahead . 13

3.3.1. Decision Heuristic . 14
3.3.2. Polarity Heuristic . 16
3.3.3. Pre-selection Heuristic . 16
3.3.4. Local Learning . 17
3.3.5. Double Lookahead . 18

4. Search Space Partitioning 20
4.1. Partitioning Methods . 20

4.1.1. Simple Partitioning Method . 21
4.1.2. Scattering Partitioning Method 22

4.2. Cutoff Heuristic . 23

5. Specification and Implementation 26
5.1. Implementation . 27
5.2. Benchmarks . 29
5.3. Parameter Tuning . 30
5.4. Evaluation . 34

6. Conclusion 38

References 39

A. Lookahead Splitter Parameters 44

5

1. Introduction

1. Introduction

The satisfiability problem (often abbreviated as SAT problem) is one of the most researched
NP-complete problem in theoretical computer science. The importance of the satisfiability
problem can be realized by the fact that it is the best known example of NP-complete
problem [Coo71] and from the still open P vs NP problem from the Millennium Prize
Problems. The SAT problem in principle is hard to solve, yet modern state-of-the-art
SAT solvers solve real life instances (problems translated to the SAT problem) quite
efficiently. For example, SAT solvers are used in planning [KS92], scheduling [GHM+12]
[CP89], vehicle routing [Goe10], hardware and software verification [BCCZ99] [DKW08],
bioinformatics [LMS06] and configuration [ABL+10].
Over the last two decades, a lot of improvements have been made to solve the SAT

problem and can be seen in the yearly SAT competitions. This success was more evident
in the sequential SAT solvers (using one CPU) and quite less in parallel ones (using more
than one CPU). A number of attempts have been made for parallel SAT solving; to have
an overview of these approaches, see [HMN+11]. With the technological shift from single
core CPU to muti-core CPUs, parallel SAT solving requires more attention than before.
Among the approaches for parallel SAT solving so far, the most dominant approach is to
run several different SAT solvers in parallel for the same problem and wait for the first
answer [Rou12]. This approach is called portfolio approach. Another promising approach
to parallel SAT solving is iterative search space partitioning [HJN10]. The idea is to
partition the original SAT problem into sub-problems and try to solve them in parallel with
some sort of limit on the solve time. If the sub-problem is not solved in that limit, then it
is partitioned into more sub-problems and each sub-problem is tried to solve (this makes
the approach iterative). Based on the idea of iterative search space partitioning, an effort
has been made in [HM12a] and the parallel SAT solver splitter [HM12b] was implemented
which used variable state independent decay sum (VSIDS) heuristic for partitioning.

Apart from the main results of [HJN10], lookahead is also mentioned as good heuristic
to partition the search space and suggests further investigation. This gives the motivation
of this work to investigate lookahead techniques for iterative search space partitioning by
extending the solver splitter. The particular interest is to find if splitter with lookahead is
faster (better median runtime) and better (solves more instances) than the splitter with
VSIDS. The idea of using lookahead for partitioning the search space is the basis of the
parallel SAT solver cube & conquer [HKWB12] and also its successor concurrent cube &
conquer [vdTHB12]. The SAT solver cube & conquer is able to solve some hard instances
much faster than other sequential or parallel SAT solvers and its successor concurrent cube
& conquer performed very well in the SAT challenge 2012. The major difference between
this work and cube & conquer approach is that this work investigates the lookahead
techniques for iterative search space partitioning (in simple words, partitioning is done
more than once) while cube & conquer uses plain search space partitioning (partitioning
is done once).
A recent paper [HW12] has put together seven challenges in parallel SAT solving, which

need the attention of the researchers for the same. This work can also be seen as an
attempt to solve one part of the challenge # 2 which is about designing a dynamic search
space partitioning that is efficiently computable and results in partitions enabling solvers

6

1. Introduction

to consistently outperform currently known methods.
The author of [HJN10] has compared decision heuristics VSIDS with lookahead and

concluded that VSIDS for search space partitioning is better than lookahead. He has used
simple lookahead decision heuristic which counts the number of assigned literals, with
detection of failed literals as the only local learning options (discussed in Section 3.3). I
believe that the performance of splitter with lookahead could be improved by including
some other decision heuristics and local learning options. It is shown in Section 5.3 that
splitter with lookahead meets the expectations and surprisingly it also outperforms the
splitter with VSIDS.
The structure of this report is as follows. Next section (Section 2) gives required

background of propositional logic. Section 3 briefly introduces the dominant approaches in
SAT solving and also gives a detailed account on the lookahead techniques. Section 4 talks
about search space partitioning where scattering is also introduced. Section 5 discusses
the specification of the splitter using lookahead techniques, some of the parameter tuning
tests performed on the training set and evaluations of the final tests on the full test set.
In the end, conclusion with future direction of this work is given in Section 6.

7

2. Preliminaries and Notation

2. Preliminaries and Notation
In this section, some basic notions of propositional logic and the notation used in this
document are given.

2.1. Propositional Logic

As most SAT solvers take formulas only in conjunctive normal form (CNF), the description
will be limited to this form. Before defining CNF formula (formula in CNF), the syntax
of propositional logic is given.

Definition 2.1. The set of atomic propositions AP is a countably infinite set of symbols.
Atomic propositions are also called atoms or propositional variables or simply variables.

Propositional variables can be assigned the truth value either true or false, represented
by > and ⊥ respectively. They can be combined with connectives negation, disjunction
and conjunction. These connectives are denoted by ¬,∨,∧ respectively, where ¬ is unary
and ∨,∧ are binary connectives.

Definition 2.2. A literal L is a propositional variable A or its negation ¬A.

Definition 2.3. A polarity of a literal L is said to be positive if L = A, negative if
L = ¬A where A ∈ AP .

Definition 2.4. Given a literal L, its complement L is defined as:

L :=
{
¬A , if L = A ∈ AP
A , if L = ¬A, where A ∈ AP

A pair L, L of literals is said to be complementary.

Definition 2.5. A clause is a disjunction of literals. It is represented by a finite set of
literals. A clause is a valid clause if it contains a complementary pair of literals.
Remark. For simplicity, valid clauses are not considered, because any truth assignment
would satisfy the clause (satisfiability of clause is defined later).

Definition 2.6. A CNF Formula F is conjunction of clauses and is represented by a set
of clauses.

Clauses can be categorized on the basis of size, which is defined as followed:

Definition 2.7. The size of a clause C, denoted by |C| is defined as the number of literals
in C. A clause C is called unit clause, binary clause, ternary clause iff |C| = 1, |C| = 2,
|C| = 3, respectively.

Definition 2.8. A cube is a conjunction of literals. It is represented as a set of unit
clauses which is a CNF formula containing only unit clauses.

To define what the SAT problem is, some important definitions like partial assignment,
reduct and some other functions are required.

8

2.1. Propositional Logic

Definition 2.9. Given a set S of literals, the complement of S, represented by S, is
defined as:

S = {L | L ∈ S}

Definition 2.10. Given a literal L, a function atom returns its underlying propositional
variable, i.e.

atom(L) =
{
A , if L = A ∈ AP
A , if L = ¬A, where A ∈ AP

The function atom can be overloaded to clauses, i.e. given a clause C, atom will a return
set of propositional variables

atom(C) =
{
∅ , if C = { }
atom(C ′) ∪ {atom(L)} , if C = C ′ ∪ {L}

Likewise, overloading of atom for CNF formula, i.e. given a CNF formula F then atom
returns the set of atoms present in the formula

atom(F) =
{
∅ , if F = { }
atom(F ′) ∪ atom(C) , if F = F ′ ∪ {C}

Definition 2.11. A partial assignment is a sequence of literals which does not contain
complementary pairs.

Definition 2.12. Given a clause C and a partial assignment J , let s(J) be the set of all
the elements in J . Then, the reduct of C w.r.t. J , denoted C|J , is defined as:

C|J =
{
> , if C ∩ s(J) 6= ∅
C \ s(J) , otherwise

Definition 2.13. A partial assignment J satisfies a clause C, in symbols J |= C, iff
C|J = >.

Definition 2.14. Given a partial assignment J and a CNF formula F , the reduct F |J of
F w.r.t. J is the CNF formula:

F |J = {C|J | C ∈ F and C|J 6= >}

The next example clarifies the notion of reduct for a CNF formula.

Example 2.15. Let F = {{1,¬2}, {3}, {4,¬5}}, and J = (1,¬3, 5). Then F |J =
{{ }, {4}}.

Definition 2.16. Let F be a CNF formula and J be a partial assignment. Then J is a
model for F , in symbols J |= F , iff F |J = { }. J falsifies F , in symbols J 6|= F , iff { } ∈
F |J . In the latter case, J is called conflict for F .

Lemma 2.17. Let F be a CNF formula, and J a partial assignment. Then J |= F iff J
satisfies every clause in F .

9

2.2. Notation

Next is the definition of the SAT problem and after that the notions of semantic
consequence, semantic equivalence and resolvent are given.

Definition 2.18. Given a CNF formula F , propositional satisfiability problem or briefly
SAT is the problem to decide whether F is satisfiable, i.e. if there exist a partial assignment
for F such that it satisfies F .

Definition 2.19. Let F , G be CNF formulas. Then G is a semantic consequence of F ,
denoted as F |= G, iff for every partial assignment J :

J |= F ⇒ J |= G

Definition 2.20. Let F , G be CNF formulas. Then F and G are semantically equivalent,
in symbols F ≡ G, iff:

F |= G and G |= F

Clauses are represented as sets which means clauses do not have duplicate literals. No
duplicate literals in a clause is an assumption for the following definition.

Definition 2.21. Let C1 be the clause containing literal L and C2 be the clause containing
literal L, then the (propositional) resolvent of C1 and C2 with respect to L is defined as:

{C1 \ {L}} ∪ {C2 \ {L}}

A clause C is said to be resolvent to C1 and C2 iff there exists a literal L such that C is
the resolvent of C1 and C2 with respect to L.

2.2. Notation

It is helpful to fix the notation for the rest of the document, which is:

- F and Fi denote CNF formulas, where i ∈ N

- C and Ci denote clauses, where i ∈ N

- A and Ai denote variables, where i ∈ N

- L and Li denote literals, where i ∈ N

- J and Ji denote partial interpretations, where i ∈ N

I will use above mentioned notion through out the document.

10

3. SAT Solving

3. SAT Solving
This section discusses the techniques used by most of the current state-of-the-art SAT
solvers for the SAT problem. These techniques can be better explained by an abstract
reduction system. An abstract reduction system is defined as:

Definition 3.1. Let R be a set and → be a binary relation R×R, then the pair (R,→)
is defined to be an abstract reduction system (ARS). The binary relation → is called
reduction and every pair (x, y) ∈→ is written as x→ y.
→+ represent the transitive closure of →.
→∗ represent the reflexive and transitive closure of →.

3.1. Davis Putnam Logemann Loveland

The Davis Putnam Logemann Loveland (DPLL) algorithm [DLL62] is the basis for most
of the current state-of-the-art SAT solvers. It is an improvement to the Davis Putnam
(DP) algorithm [DP60]. The DPLL ARS is defined as:

Definition 3.2. Let CNFF be a set of CNF-formulas and PA be a set of partial assign-
ments over the set of propositional variables AP , then

R ⊆ (CNFF × PA) ∪ {SAT,UNSAT}

For better representation, (F, J) ∈ R is written as F :: J . The evaluation of F :: J is the
reduct F |J . The reduction rules are given in Figure 1. The literal with a dot on top i.e.
L̇ represents a decision literal, otherwise a propagated literal. P contains only propagated
literals.

The definition of level used in DPLL ARS is as follows:

Definition 3.3. The level of J , in symbols level(J), is defined as the total number of
decisions literals in J .

The reduction rules SAT and UNSAT are simple rules for satisfiable and unsatisfiable
results respectively. They are also the termination rules which stop the application of
any further reduction rules. The reduction rule DECIDE chooses a free variable and its
polarity in F :: J and concatenates to J . The definition of free variable is:

Definition 3.4. A variable A ∈ atom(F) is a free variable iff A ∈ atom(F |J), otherwise
it is said to be assigned.

F :: J SAT SAT iff F |J = ∅
F :: J UNSAT UNSAT iff { } ∈ F |J and level(J) = 0
F :: J DECIDE F :: J, L̇ iff L ∈ atom(F |J) ∪ atom(F |J)
F :: J, L̇, P NB F :: J, L iff { } ∈ F |J,L̇,P

F :: J UNIT F :: J, L iff {L} ∈ F |J

Figure 1: DPLL ARS

11

3.2. Conflict-Driven Clause Learning

The reduction rule NB, where NB stands for naive backtrack, removes the last decision
literal and the following propagated literals from J when a conflict (an empty clause)
occurs in the reduct. The heart of the DPLL ARS is the UNIT reduction rule. It
concatenates the literals in unit clauses of F |J , i.e. C = {L} ∈ F to J := J, L and these
literals are called propagated literals. The unit rule is also called unit propagation. Here
is an example to explain how DPLL ARS works.

Example 3.5. Let F = {{1, 2}, {2, 3}, {2, 3, 4}, {1, 3}, {4}}, then the execution in DPLL ARS
is:

F :: ()
 UNIT F :: (4) F |(4) = {{1, 2}, {2, 3}, {2, 3}, {1, 3}}
 DECIDE F :: (4, 1̇) F |(4,1̇) = {{2, 3}, {2, 3}, {3}}
 UNIT F :: (4, 1̇, 3) F |(4,1̇,3) = {{2}, {2}}
 UNIT F :: (4, 1̇, 3, 2) F |(4,1̇,3,2) = {{ }}
 NB F :: (4, 1) F |(4,1) = {{2}, {2, 3}, {2, 3}}
 UNIT F :: (4, 1, 2) F |(4,1,2) = {{3}}
 UNIT F :: (4, 1, 2, 3) F |(4,1,2,3) = { }
 SAT SAT

The execution of DPLL ARS starts from F :: () (with empty partial assignment). The
unit rule is applied because the unit clause {4} in F |(). No other rule applies except
decide rule. The decide rule chooses the literal 1 as a decision. The unit rule is twice
because of the unit clause {3} in F |(4,1̇) and {2} in F |(4,1̇,3). This leads to an empty
clause in F |(4,1̇,3,2). The rule naive backtrack is applied to correct the last decision and
change the last decision literal to propagated literal. A clause becomes a unit now in
F |(4,1). Applying the unit rule results in F |(4,1,2) and another unit clause. The unit rule
is applied again which returns F |(4,1,2,3). Now there are no clauses left in F |(4,1,2,3) and
the SAT rule is applicable. The final result is SAT, i.e. the given formula F is satisfiable.

3.2. Conflict-Driven Clause Learning

The conflict-driven clause learning (CDCL) algorithm [SS96] is based on the DPLL algo-
rithm. The CDCL algorithm gives the power to perform non-chronological backtracking by
adding clauses to the CNF-Formula which are semantic consequences of the CNF-Formula.
DPLL-CDCL ARS is obtained by removing the reduction rule NB from the DPLL ARS
and adding the reduction rule CDBL. To explain the reduction rule CDBL, the notion
of relevant clause and linear resolution derivation is required.

Definition 3.6. A clause C is relevant in F w.r.t J iff C ∈ F and there exists a partial
assignment J1, L, J2 such that

1. J1, L, J2 = J and

2. C|J1 = {L}

The set relevant(F :: J) = {C ∈ F | C is relevant in F :: J} is called the set of relevant
clauses of F w.r.t. the partial assignment J .

12

3.3. Lookahead

Definition 3.7. Given C and F , a linear resolution derivation from C w.r.t. F is a
sequence S = (Ci | i ≥ 0) of clauses defined inductively as follows:

• C0 = C and

• Ci is the resolvent of Ci−1 and for some clause E ∈ F

If S is finite and Cn is the last element of the sequence, then it is called a linear resolution
derivation from C to Cn w.r.t. F .

Definition 3.8. The conflict driven backtrack learning (CDBL) reduction rule CDBL is:
F :: J1, L̇, J2 CDBL F ∪ {C1} :: J1, L1
iff there exists C ∈ F such that C|J1,L̇,J2

= { } and there is a linear resolution derivation
from C to C1 w.r.t. relevant(F :: J1, L̇, J2) and C1|J1 = {L1}
The clause C1 is called learnt clause.

The reduction rule DECIDE is an important reduction rule in DPLL ARS, see Figure 1.
Many heuristics have been explored in the last decade, but the one that stands out among
these in the CDCL SAT solvers is the variable state independent decay sum (VSIDS) deci-
sion heuristic. The VSIDS decision heuristic was presented in the Chaff paper [MMZ+01].
The idea of the VSIDS decision heuristic is to assign activity score to each variable based
on its frequency in the formula. This activity score of a variable is increased with usage of
the variable in the linear resolution derivation of the learnt clause by the CDBL reduction
rule. Then the VSIDS picks the variable with the highest activity score. Due to the use
of acitivity score, the VSIDS decision heuristic is also called activity heuristic.

3.3. Lookahead

The lookahead SAT solvers are also based on the DPLL algorithm. The major difference of
lookahead SAT solver from CDCL SAT solvers is that they are heavily driven by expensive
heuristics. Before going deep into the lookahead procedure, first look at some basic
definitions.

Definition 3.9. The lookahead on F :: J with respect to L, in symbols
lookahead(F :: J, L̇), is defined as:

lookahead(F :: J, L̇) =
{
> , if { } ∈ F |J,L̇,P and F :: J, L ∗UNIT F :: J, L̇, P
⊥ , if otherwise

Definition 3.10. A literal L is called a failed literal in F :: J if lookahead(F :: J, L̇) = >.

The main idea of lookahead SAT solvers is to perform lookahead on some interesting
free variables, find failed literals and choose a literal according to heuristics (explained
later in this section). This process can be called as lookaheadDecide. The procedure
lookaheadDecide is performed every time before actually deciding a literal. To utilize
the time efficiently, it performs some reasoning techniques (also explained later in this
section).

13

3.3. Lookahead

F :: J SAT F :: SAT iff F |J = { }
F :: J UNSAT F :: UNSAT iff { } ∈ F |J and

level(J) = 0
F :: J DECIDE F :: J, L̇ iff L ∈ atom(F |J) ∪

atom(F |J)
F :: J UNIT F :: J, L iff {L} ∈ F |J
F 0, . . . , F l :: J, L̇, P NB F 0, . . . , F l−1 :: J, L iff { } ∈ (F 0 ∪ . . . ∪

F l)|J,L̇,P

F :: J, L̇, P LA_BACK F :: J iff { } /∈ F |J,L̇,P

F :: J LR F, F l :: J iff F |J |= F l|J and
level(J) = l

Figure 2: Lookahead ARS

Definition 3.11. To explain the DPLL-Lookahead in terms of ARS, some modifications
in the ARS (R,) are required. Now each clause of F has a number in the superscript,
which denotes its level. The reduction rules of DPLL-Lookahead ARS are shown in
Figure 2.

The reduction rule LR, where LR denotes for local reasoning, adds clauses which are
locally valid at level l (means they are valid as long as level(J) ≥ l) and these clauses are
called locally learnt clauses. All these locally learnt clauses at level l need to be removed
while applying the reduction rule NB at level l. The reduction rule NB finds the
failed literal L. Another reduction rule which is not in DPLL ARS is LA_BACK, which
is only used in the lookaheadDecide phase while computing the decision heuristic. The
reduction rule LA_BACK gives the power to go back one level, same as NB except it
can be applied even if a failed literal is not detected in the lookaheadDecide. Rest of
the reduction rules works same as described in DPLL ARS, in Figure 1.
Remark. For simplicity, the clauses of same level are grouped together into a CNF-Formula.
So, F 0 denotes clauses of original problem and clauses learnt at level 0 while F 2 denotes
the clauses learnt at level 2.

3.3.1. Decision Heuristic

The most simple and popular branching heuristic which is still used in lookahead SAT
solvers, is given by Freeman in [Fre95]. It is based on the simplification hypothesis by
Hooker and Vinay [HV95]. Before stating what the simplification hypothesis is, the notion
of simpler problem is required. A possible definition taken from [Fre95] is given next.

Definition 3.12. A simpler problem is the one with fewer and shorter clauses.

Definition 3.13. Given F1 :: J1 and F2 :: J2, then F2 :: J2 is a sub-problem of F1 :: J1,
if level(J2) > level(J1) and F1 :: J1 + F2 :: J2.

Hypothesis 3.14. Simplification hypothesis: Other things equal, a decision heuristic
works better when it creates simpler sub-problems.

14

3.3. Lookahead

Freeman [Fre95] defines the decision heuristic as choosing the variable which gives the
most simplest sub-problems. One way for choosing such a variable is to first calculate
the difference (in short diff) each polarity of that variable makes to original problem by
performing one-step lookahead, and then combining the diff score of each polarity. This
combined diff score is called mixdiff [HvM09]. Given a CNF-Formula F and a literal
L = A ∈ atom(F), mathematically mixdiff can be written as:

mixdiff(F :: J,A) =1024 ∗ diff(F :: J, L̇) ∗ diff(F :: J, L̇) + diff(F :: J, L̇)

+ diff(F :: J, L̇)

So, the decision heuristic is given by:

lookaheadDecide(F :: J) = arg maxA∈atom(F |J)mixdiff(F :: J,A)

There are different variations of diff based on how it is calculated. One given by Freeman
is to count the number of assigned variables. Given F and L, diff1 calculates the number
of assigned variables by performing lookahead on F with respect to L, if L is not a failed
literal. Mathematically it is defined as:

diff1(F :: J, L̇) =


|atom(F)− atom(F |J,L̇,P)| , if F :: J, L̇ ∗UNIT F :: J, L̇, P and

lookahead(F :: J, L̇) = ⊥
0 , if lookahead(F :: J, L̇) = >

Another variation is to calculate the number of new binary clauses, denoted by diff2.
Mathematically it is defined as:

diff2(F :: J, L̇) =



|{C such that |C| = 2 and
C /∈ F |J and
C ∈ F |J,L̇,P }| , if lookahead(F, L̇) = ⊥ and

F :: J, L̇ ∗UNIT F :: J, L̇, P
0 , if lookahead(F, L̇) = >

A generalized decision heuristic model called recursive weighted heuristic, for CNF
formulas of maximum clause size 3, is presented in [MdWH10] which is extended for
CNF formulas of arbitrary size in [AF10]. Recursive weighted heuristic is an iterative
model and accuracy of the heuristic increases with the number of iterations performed.
The heuristic value hi(L) means the tendency of the literal L being an element of the
model for a given F :: J .
For each A ∈ atom(F |J):

h0(A) = h0(¬A) = 1

For each L ∈ atom(F |J) ∪ atom(F |J):

hi+1(L) =
∑

C∈F |J

(γ
k−|C|

µ
|C|−1
i

∏
L1∈C\{L}

hi(L1))

15

3.3. Lookahead

µi = 1
2 ∗ |atom(F)|

∑
A∈atom(F)

(hi(A) + hi(¬A))

where k is the maximum clause size, γ is the importance constant which is set to 5
by [AF10] and µi is the average heuristic value in iteration i. The importance constant γ is
used to give more weight to shorter clauses and the average heuristic value µi to normalize
the scores. The heuristic value for a literal is treated as diff score and mixdiff is used
to calculate the value of a variable in F .

3.3.2. Polarity Heuristic

After deciding the variable with the decision heuristic, the next step is to choose the
polarity of the variable to be examined first. There are different strategies to do so and
different solvers go for different ones.
The lookahead SAT solver satz [LA97] always chooses positive polarity. The lookahead

SAT solver kcnfs [DD04] chooses the polarity which has higher frequency of the chosen
decision variable in the formula. The lookahead SAT solver march [HvM06] chooses the
polarity for which the diff score is lower. The reason for choosing polarity with lower
diff score is that the lower diff score assigns less number of variables than the the higher
diff score does, thus has lower probability of making mistake and higher probability of
leading to a satisfiable solution. On the other hand, polarity with higher diff score can
lead to less computation than polarity with lower diff score. It is a good idea to check
polarity with higher diff score if the complementary polarity pair (L,L) diff scores are
not comparable. Comparable is defined as

c ≤ diff(L)
diff(L̄)

≤ 1
c

where c is a parameter and its value lies between 0 and 1. This strategy of choosing
polarity is called adaptive polarity heuristic and it has been introduced in the later version
of the SAT solver march [Heu08]. The value for c used in march is 0.1.

3.3.3. Pre-selection Heuristic

Pre-selecting small number of variables to be used by the decision heuristic can reduce the
computational cost of the decision heuristic. On the other hand, this pre-selection of the
variables can also degrade the overall performance of the SAT solver if the pre-selected
variables do not contain the optimal variable (the variable which would have been chosen
by the decision heuristic without performing the pre-selection of variables). Due to these
reasons, pre-selection of the variables is a very crucial step. Some of the heuristics for
pre-selection of variables are discussed here.
The SAT solver satz [LA97] uses propz heuristic, which pre-selects the variables based

on their occurrence in the binary clauses.

propz(F) = {A | A ∈ atom(C) and C ∈ F and |C| = 2}

The SAT solver kcnfs [DD04] also uses propz. The pre-selection heuristic used by the

16

3.3. Lookahead

SAT solver march [HvM06] is based on the approximated number of newly created clauses,
called clause reduction approximation. To explain what CRA is, first it is helpful to have
a function freq>2. Consider a literal L, a clause C and a CNF formula F , then the
function freq>2(F,L) returns the number of clauses in which L is present and whose size
is greater than 2.

freq>2(F,L) = |{C | C ∈ F , L ∈ C and |C| > 2}|

CRA(F,A) = (
∑

{A,L1}∈F

freq>2(F,L1)) ∗ (
∑

{¬A,L2}∈F

freq>2(F,L2))

The heuristic CRA only considers the variables in binary clauses and their impact on
the formula. The heuristic CRA is an approximation because it only counts the number
of newly created clauses and does not cater the fact that some of these newly created
clauses might be satisfied. The free variables are sorted in descending order on the score
returned by CRA and the pre-selection heuristic gives some top percentage of these sorted
variables. The SAT solver march takes top 10%.

The decision heuristic RWH can also be used as pre-selection heuristic.

3.3.4. Local Learning

The decision heuristic lookaheadDecide is computationally expensive and to get most
out of it, some other techniques are applied during that computation time.
While performing lookahead(F :: J, (̇L)), where F is CNF formula and L is a literal

in one of clause in F |J , some literals e.g. L1 may be propagated by the unit rule. This
means that the literal L1 is implied by the literal L and these implications are either called
direct implications if there exists a clause {L,L1} in F or indirect implication otherwise.
Consider the level(J) = l, then the indirect implications can be added as binary clause
e.g. {L,L1}l to the CNF formula F , in order to further constraint F and this addition of
binary clauses is called local learning [HvM09]. As the name suggests, these clauses are
not globally valid and they must be removed when backtracking, i.e. when level becomes
less than l. The following example will make things clear which requires the definition of
iterative unit propagation.
Definition 3.15. Given F :: J , the function iterative unit propagation iup(F :: J, L̇)
after deciding L is defined as:

iup(F :: J, L̇) = s(P) if F :: J, L̇ ∗UNIT F :: J, L̇, P

Example 3.16. Consider CNF formula
F = {{1, 2}, {1, 2, 3}, {1, 3, 4}, {1, 3, 6}, {1, 4, 5}, {1, 6}, {4, 5, 6}, {5, 6}}
as current level is 0, so F 0 := F . Suppose 1 is chosen as a decision literal, then

F 0 :: ()
 DECIDE F 0 :: (1̇) F 0|(1̇) = {{2}, {2, 3}, {3, 4}, {4, 5}, {4, 5, 6}, {5, 6}}
 UNIT F 0 :: (1̇, 2) F 0|(1̇,2) = {{3}, {3, 4}, {4, 5}, {4, 5, 6}, {5, 6}}
 UNIT F 0 :: (1̇, 2, 3) F 0|(1̇,2,3) = {{4}, {4, 5}, {4, 5, 6}, {5, 6}}
 UNIT F 0 :: (1̇, 2, 3, 4) F 0|(1̇,2,3,4) = {{5, 6}}

17

3.3. Lookahead

iup(F 0 :: (1̇)) = {2, 3, 4} and the implication clauses are {1, 2}, {1, 3}, {1, 4}. The first
implication clauses is is a direct implication while second and third are indirect implications.

One problem with the local learned clauses is that they are too many (more than the
original number of clauses in the CNF-Formula) and they can degrade the performance
of unit propagation. A computationally cheap solution to this problem is detection of
necessary assignments, inspired from Stålmarcks’s proof procedure [SS98] for propositional
logic.

Definition 3.17. Given F :: J and some decision literal L̇, then L1 is a necessary assign-
ment iff:

L1 ∈ iup(F :: J, L̇) ∩ iup(F :: J, L̇)

Example 3.18. Consider the last example where
F 0 = {{1, 2}, {1, 2, 3}, {1, 3, 4}, {1, 3, 6}, {1, 4, 5}, {1, 6}, {4, 5, 6}, {5, 6}}
and iup(F 0 :: (1̇)) = {2, 3, 4}.
Now choosing 1 as the decision literal.

F 0 :: ()
 DECIDE F 0 :: (1̇) F 0|(1̇) = {{3, 6}, {6}, {4, 5, 6}, {5, 6}}
 UNIT F 0 :: (1̇, 6) F 0|(1̇,6) = {{3}, {4, 5}}
 UNIT F 0 :: (1̇, 6, 3) F 0|(1̇,6,3) = {{4, 5}}

iup(F 0 :: (1̇)) = {3, 6} and the literal 3 is a necessary assignment.

Another technique is to find equivalent literals and add two binary implication clauses
to local learnt clauses – one for each direction of equivalence. This technique is called
equivalence reasoning by Li [Li03].

Definition 3.19. Given F :: J , then L1 and L2 are equivalent literals if:

L2 ∈ iup(F :: J, L̇1) ∩ iup(F :: J, L̇1)

3.3.5. Double Lookahead

The idea of double lookahead to check if a literal gets a high diff score. This check is
done by performing another lookahead, as also indicated by the name. The idea of double
lookahead comes from the paper [Li99] by Li.

Definition 3.20. Given F :: J, L̇1, P then doubleLookahead is:
doubleLookahead(F :: J, L̇1, P)

=


> ,if lookahead(F :: J, L̇1, P, L̇2) = > and

lookahead(F :: J, L̇1, P, L̇2) = >
for some L2 ∈ atom(F |J,L̇1,P) ∪ atom(F |J,L̇1,P)

⊥ ,otherwise

18

3.3. Lookahead

doublelookahead (F :: J, L̇, P)
1 if diff(F :: J, L̇) > trigger

2 repeat
3 for every A ∈ V arSubset and A /∈ atom(s(J, L̇, P))
4 if lookahead(F :: J, L̇, P, Ȧ) is > and lookahead(F :: J, L̇, P,¬Ȧ) is >
5 return >
6 end if
7 F := F ∪ doublelookaheadresolvent(F :: J, L̇, P)
8 end for
9 until nothing (important) has been learnt

10 end if
11 updatetrigger(F :: J, L̇, P)
12 return ⊥

Figure 3: Pseudo code of the doubleLookahead

Double lookahead is successful (denoted by > in definition) if it finds conflict on both
polarities of a variable, otherwise unsuccessful (denoted by ⊥). Important point is to know
when to perform double lookahead. Li proposes to perform double lookahead on F :: J, L̇
if a diff(F :: J, L̇) > trigger. He suggest to initialize with trigger1 = 0.17 ∗ |atom(F)|
and update the value of the trigger1 according to following:
updatetrigger1(F :: J, L̇1, P)

=
{
diff(F :: J, L̇1) ,if doubleLookahead(F :: J, L̇1, P) = ⊥
0.17 ∗ |atom(F)| ,if doubleLookahead(F :: J, L̇1, P) = >

Heule [HvM07] proposes slight modification to initialization and update of trigger value.
He initializes with trigger2 = 0 and update trigger2 according to following:
updatetrigger2(F :: J, L̇1, P)

=
{
diff(F :: J, L̇1) ,if doubleLookahead(F :: J, L̇1, P) = ⊥
trigger2 ,if doubleLookahead(F :: J, L̇1, P) = >

The value of trigger2 is slightly reduced after each lookaheadDecide.
While performing double lookahead, some failed literals and necessary assignments can

be detected. They can be saved as binary learnt clauses and these clauses are called double
lookahead resolvents. For example, consider that the double lookahead is performed on
F :: J, L̇1, P and L2 is detected as necessary assignment, then a binary clause {L1, L2}l−1,
where l − 1 is the level of the learnt clause if level(J, L̇1, P) = l.

Fig. 3 shows the pseudo-code of double lookahead. In start, double lookahead checks
according to the trigger value whether to perform the procedure or exit without perform-
ing anything. Double lookahead is performed on some of the interesting free variables
(pre-selected variables) and checks if it could find a variable whose both polarities lead
to a conflict. If double lookahead finds such variable, then it return > which means that
double lookahead is successful and if double lookahead is not able to find such variable
then returns ⊥ which means it is unsuccessful. The procedure also adds double lookahead
resolvents and the procedure repeats until no double lookahead resolvents can be added.

19

4. Search Space Partitioning

4. Search Space Partitioning

The idea of search space partitioning approach for parallel SAT solving is to divide the
search space of the DPLL into partitions and to solve them in parallel, see Fig. 4. Think
of search space partitioning as a function ssp which takes a CNF-Formula and returns a
set of CNF forumulas.

Definition 4.1. Given F , mathematically ssp is defined as:

ssp(F) = {F1, F2, . . . , Fn}

such that

• F is satisfiable if there exists Fi ∈ ssp(F) is satisfiable

• F is unsatisfiable if every Fi ∈ ssp(F) is unsatisfiable

Hyvärinen [HJN10] divides the search space partitioning approach into two parts: plain
partitioning and tree partitioning. The former does partitioning only once and the later
does partitioning more than once if some partition is not solved in a given time limit. A
partition is said to be solved if it is shown to be either satisfiable or unsatisfiable. Tree
partitioning is also called iterative partitioning. Figure 5a shows an example of plain
partition, which creates two partitions F1 and F2 of the given problem F . Example of
iterative partitioning is shown in Figure 5b. It first creates two partitions F1 and F2 for
the given problem F , then each partition is tried to solve. Suppose the partitions F1 and
F2 are not solved in given time limit, then the iterative partitioning creates partitions by
applying the paritioning function on F1 and F2 which results in partitions F11, F12, F21,
F22.
As mentioned in the Section 1, the focus of this work is on iterative partitioning. The

rest of the document focuses on iterative partitioning and different methods for its cre-
ation.

4.1. Partitioning Methods

The methods discussed here to create partitions are different kinds of splitting and the
definition of the splitting is as follows:

F

F2F1 Fn

Figure 4: Search Space Partitioning

20

4.1. Partitioning Methods

F

F1 F2

(a)

F

F1 F2

F11 F12 F21 F22

(b)

Figure 5: (a) Plain Partition (b) Iterative Partition

Definition 4.2. The function ssp(F) is called splitter and the elements of the set returned
by ssp(F) are called splittings if the following condition is observed:

Fi ∪ Fj is unsatisfiable, for 1 ≤ i < n and i < j ≤ n

Remark. In this work, splitting and partition are used interchangeably.

4.1.1. Simple Partitioning Method

The simple partitioning method creates a search tree by branching on literals and returns
the child nodes as splitting. For example, given F , the splittings of F created by simple
partitioning method are simple(F) = {F1, F2, F3, F4}.

F1 = F ∪ {{L1}, {L2}}
F2 = F ∪ {{L1}, {L2}}
F3 = F ∪ {{L1}, {L3}}
F4 = F ∪ {{L1}, {L3}}

Figure 6 shows how a simple partitioning method can be used to create splittings. The
beauty of simple partitioning method is its simplicity, i.e. it is easy to create. The

F

F1 F2 F3 F4

L1 L1

L2 L2 L3 L3

Figure 6: Simple Method

21

4.1. Partitioning Methods

F

F1

F2

F3 F4

D1 D1

D2 D2

D3 D3

Figure 7: Scattering Partitioning Method

drawback with simple partitioning method is that it can not guarantee the number of
splittings it produces and the reason is that some of the splitting are faced with conflict
when they are created. For example, in the Figure 6 it can be the case that L2 is failed
literal, due to which F2 is unsatisfiable splitting and simple(F) returns 3 splittings instead
of 4.

4.1.2. Scattering Partitioning Method

The scattering partitioning method [HJN06] creates a search tree same as simple method
but by branching on cubes and clauses.

Definition 4.3. Given a cubeD = {{L1}, {L2}, . . . , {Lk}}, then the function cube2clause(D)
returns a clause containing all the literals in the cube.

cube2clause(D) = {L1, L2, . . . , Lk}

Then negation of a cube D, in symbols D, is given by:

D = cube2clause(D)

Then splitting of F created by scattering can be explained by the following example.
Consider F , then scattering produces 4 splittings, i.e. scattering(F) = {F1, F2, F3, F4},
which are

F1 = F ∪D1 := {{L1}, {L2}}
F2 = F ∪ {D1} ∪D2 := {{L3}}
F3 = F ∪ {D1} ∪ {D2} ∪D3 := {{L4}}
F4 = F ∪ {D1} ∪ {D2} ∪ {D3}

22

4.2. Cutoff Heuristic

F

F1

F2 F3 F4

L1

L2

{L1, L2}

L3

L4

{L3, L4}

L5 L5

Figure 8: Scattering Method with Sequence Cutoff Heuristic

Figure 7 shows how scattering method creates splittings. Starting from the root of the tree
in the Figure 7, the scattering method makes a certain number of decisions to create the
left branch with the cube D1 and right branch is the negation of D1 (by complementing
the set obtained from the function cube2clause(D1)). This process of creating cube
and clause is applied iteratively on the right branch until the desired number of leaves
(splittings) are produced. An advantage about scattering is that it can say with higher
probability about the number of splittings it will produce than the simple partitioning
method. In other words, scattering method has better control over the number of splittings
than the simple partitioning method.
It is quite clear that the process of creating splitting, either simple or scattering method,

is actually selection of variables. Hyvärinen and Manthey [HM12a] use VSIDS heuristic
to select the variables for splitting (called VSIDS splitter in this work). VSIDS heuristic
is discussed in Section 3.2. Hyvärinen [HJN10] also uses lookahead heuristic to choose
the variables and their polarity (called lookahead splitter in this work). He uses simple
decision heuristic diff1 and no local reasoning techniques. This work extends his idea of
lookahead splitting by additional decision heuristic, polarity heuristic, local reasoning, dou-
ble lookahead and variable pre-selection heuristic. The lookahead techniques are discussed
in Section 3.3.

4.2. Cutoff Heuristic

An important point is the number of selected variables per splitting and this can be
modelled by cutoff heuristic. A static cutoff heuristic chooses fixed number d of variables
per splitting. According to static cutoff heuristic, a splitting is created when level(J) = d
is reached. This can be applied to both simple and scattering search.
A slightly modified static cutoff heuristic for scattering search is given by Hyväri-

nen [Hyv11] which uses separate fixed number di of variables for each splitting i and
I call it sequence cutoff heuristic. To compute the values of di, following equations are

23

4.2. Cutoff Heuristic

F

F4

F1

F2 F3

L1 L1

L2 L2

L3 L3

Figure 9: Simple Method with Dynamic Cutoff Heuristic

used:

di = argx∈Nmin|ri − 2−x|

where ri = 1
n− i+ 1

Here is an example.

Example 4.4. Given F , consider a scattering produces 4 splitting, i.e. scattering(F) =
{F1, F2, F3, F4} (see Figure 8).
As n = 4, so
r1 = 1

4 d1 = 2 F1 = F ∪ {{L1}, {L2}}
r2 = 1

3 d2 = 2 F2 = F ∪ {{L1, L2}} ∪ {{L3}, {L4}}
r3 = 1

2 d3 = 1 F3 = F ∪ {{L1, L2}} ∪ {{L3, L4}} ∪ {{L5}}
r4 = 1 d4 = 0 F4 = F ∪ {{L1, L2}} ∪ {{L3, L4}} ∪ {{L5}}

Figure 8 shows sequence cutoff heuristic for scattering. Starting from root, the left branch
makes 2 decsions L1 and L2 (because of d1 = 2). Then on the right branch, the clause
{L1, L2} is added to the formula F . This right branch is further branched with 2 decisions
L3, L4 on the left branch and the clause {L3, L4} on the right branch. Similarly the last
produced right branch is again branched with one decision L5.

A dynamic cutoff heuristic is used in cube&conquer [HKWB12] and it is as follows:
CC-Condition: level(J)2 ∗ |s(J)| < θcutoff ∗ |atom(F)|
A splitting is created if the above condition is violated. This dynamic cutoff heuristic is
made for plain partitioning (splitting is done once) and this work is focused on iterative
partitioning, so the dynamic cutoff heuristic needs to be modified. The heuristics are
different for simple method and scattering method. at the dynamic cutoff heuristic for
simple method.
Given F :: J , the modified dynamic cutoff heuristic for simple method creates a split-

ting when the lookahead splitter violates the following condition:
Condition-1 : level(J)2 ∗ |s(J)| ∗ log(numconflict) < θcutoff ∗ |atom(F)|

24

4.2. Cutoff Heuristic

The dynamic cutoff heuristic for scattering method creates a splitting if any of the
following condition is violated by the lookahead splitter:
Condition-2 : level(J)2∗|s(J)|∗log(numconflict) < θcutoff∗|atom(F)|∗log(remainchild)
Condition-3 : level(J) < maxclausesize− 1
where numconflict is the number of conflicts that will be used as a limit to solve each
splitting, remainchild is the number of remaining number of splittings to be created and
θcutoff is the magic constant which need to be tuned. θcutoff is decreased by factor 0.7 if
the chosen variable becomes a failed literal and is increased by factor 0.05 after creating
each splitting (to avoid getting value too low). The difference between condition-1 and
condition-2 is the log(remainchild) which is inspired from the sequence cutoff heuristic,
so that number of decision literals decreases as the number of created splittings increases.
The condition-3 enforces a fixed upper bound of the decision variables per splitting. This
limit comes from the simplification hypothesis (see Section 3.3). As the goal is to produce
simpler sub-problem and in scattering search the literals selected for one splitting appear
as a complemented literals in a clause in the latter splitting. Due to the simplification
hypothesis, scattering method should not make decisions more than the size of the maxi-
mum clause of the original problem. Although, no clauses are added to original problem
as done in scattering method, but the condition-3 can serve as a guide for simple search.
Here is an example of comparison between dynamic cutoff heuristic and simple cutoff
heuristic for simple method.

Example 4.5. Given F , the simple splitting of F using dynamic cutoff heuristic are
simple(F) = {F1, F2, F3, F4} (see Fig. 9).

F1 = F ∪ {{L1}, {L2}}
F2 = F ∪ {{L1}, {L2}, {L3}}
F3 = F ∪ {{L1}, {L2}, {L3}}
F4 = F ∪ {{L1}}

The difference between static cutoff heuristic and sequence cutoff heuristic for simple
partitioning method can seen by comparing Figure 6 and Figure 9.

25

5. Specification and Implementation

5. Specification and Implementation

This work is an extension to the SAT solver Splitter [HM12b] from the SAT Challenge 2012.
The implementation of Splitter is based on MiniSAT 2.2 [Nik10]. The SAT solver Splitter
uses iterative partitioning with VSIDS heuristic. It has been slightly changed and now
it uses number of conflicts as a metric to limit the solving phase; earlier it used time as
a metric to do that. I have extended Splitter with lookahead techniques and call it as
lookahead splitter (LA splitter).
The specification of lookahead splitter can be seen as three different parts (see Fig-

ure 10):

1. Structure – partitioning method, cutoff heuristic.

2. Decision – variable decision heuristic, polarity heuristic, variable pre-selection heuris-
tic, double lookahead.

3. Learning – failed literal, necessary assignment, variable equivalence, double looka-
head resolvents, clause learning.

The structure is about choosing the partitioning method i.e. simple or scattering and
cutoff heuristic which can be static, sequence or dynamic. Figure 10 shows them as
structure options box. The decision part of the lookahead splitter includes the heuristics
about variable decision, polarity and variable pre-selection for performing lookahead. It
also includes about choosing to use or not to use double lookahead. The decision part
is shown as decision options box in Figure 10. The different options of learning part
of lookahead splitter are given in the Figure 10 as learning options box. It includes
the option to use the failed literal, necessary assignment, variable equivalence, double
lookahead resolvents, clause learning while creating splitting and this option mentioned
as local. An important thing to mention here is the use of partition option mentioned in
the Figure 10, when used pushes the learning to splitting. Here is an example to clarify
the learning options:

Example 5.1. Consider CNF formula
F = {{1, 2}, {1, 2, 3}, {1, 3, 4}, {1, 3, 6}, {1, 4, 5}, {1, 6}, {4, 5, 6}, {5, 6}}
To keep things simple, I will create splittings by deciding one variable. Suppose the pre-
selection heuristic gives the variable set {1, 6}. With learn options off for lookahead will
choose 1, because diff1 score (which is based on the number of assigned variables) for
the variable 1 is higher than the variable 6. Here are the runs of lookahead ARS:
F :: () DECIDE F :: (1̇) ∗UNIT F :: (1̇, 2, 3, 4)
F :: (1̇, 2, 3, 4) LA_BACK F :: ()
F :: () DECIDE F :: (1̇) ∗UNIT F :: (1̇, 6, 3)
F :: (1̇, 6, 3) LA_BACK F :: ()
F :: () DECIDE F :: (6̇) ∗UNIT F :: (6̇, 1, 2, 3, 4, 5)
F :: (6̇, 1, 2, 3, 4, 5) LA_BACK F :: ()
F :: () DECIDE F :: (6̇) ∗UNIT F :: (6̇)
F :: (6̇) LA_BACK F :: ()

26

5.1. Implementation

By deciding on literal 1, the number of assigned variables is 4 and by deciding on literal 1,
the number of assigned variables is 3. Then diff1 is calculated as:
diff1(1) = 1024 ∗ 4 ∗ 3 + 4 + 3 = 12295
Similarly the diff1 score for variable 6 can be calculated as:
diff1(6) = 1024 ∗ 6 ∗ 1 + 6 + 1 = 6151
The splittings of F produced by lookahead with local learn and partition learn option

can be seen in Table 1. Here is the run of lookahead ARS with local learn option and
partition learn option (the runs are same for local learn and partition learn, the difference
is only in the splittings produced):
F :: () DECIDE F :: (1̇) ∗UNIT F :: (1̇, 2, 3, 4)
F :: (1̇, 2, 3, 4) LA_BACK F :: ()
F :: () DECIDE F :: (1̇) ∗UNIT F :: (1̇, 6, 3)
F :: (1̇, 6, 3) LR F, {{3}0} :: (1̇, 6, 3) 3 is a necessary assignment
F, {{3}0} :: (1̇, 6, 3) LA_BACK F, {{3}0} :: ()
F, {{3}0} :: () UNIT F, {{3}0} :: (3)
F, {{3}0} :: () DECIDE F :: (6̇) ∗UNIT F :: (3, 6̇, 1, 2, 4, 5)
F, {{3}0} :: (3, 6̇, 1, 2, 4, 5) LA_BACK F :: (3)
F, {{3}0} :: () DECIDE F :: (3, 6̇) ∗UNIT F :: (3, 6̇)
F, {{3}0} :: (6̇) LA_BACK F :: (3)
The diff1 is calculated as above.

The difference between the learn options of LA splitter is clear from Table 1 i.e., with
the learn option off and the learn option local, the local learnt clause (in this example it
is necessary assignment 3) is not included in the splitting while the learn option partition
adds the variable 3 in the splittings.

In the rest of this section, I am going to discuss some important implementation details,
parameter tuning and the evaluations of the final experiments.

5.1. Implementation

Some important implementation details which differ from specification are discussed here.
As mentioned earlier, Splitter is based on MiniSAT and MiniSAT uses lazy data struc-
ture [MMZ+01] for the representation of formulas. The lazy data structure can only
detect clauses which become unit or unsatisfied and due to this reason it makes very
difficult to calculate the diff2 score (the number of newly created binary clauses; dis-
cussed in Section 3.3). As a remedy to this problem, I have implemented the idea given
by [MvVW06] which approximates the diff2 score by counting the ternary clauses (clauses
of size 3) which become binary.

Learn Option Splitting F1 Splitting F2
Off F ∪ {{1}} F ∪ {{1}}
Local F ∪ {{1}} F ∪ {{1}}
Partition F ∪ {{1}, {3}} F ∪ {{1}, {3}}

Table 1: Example of Learn Options in LA splitter

27

5.1. Implementation

STRUCTURE OPTIONS

Partition method

Simple Scattering

Cutoff heuristic

Static Sequence Dynamic

DECISION OPTIONS

Variable decision heuristic

diff1 diff2

Polarity heuristic

Static
+ve first -ve first

Reduction based
Lower first Higher first Adaptive

Random

Variable pre-selection heuristic

propz CRA RWH

Double lookahead

Off On

LEARNING OPTIONS

Failed literals

Off Local Partition

Clause learning

Off Local Partition

Necessary Assignment

Off Local Partition

Literal equivalence

Off Local Partition

Figure 10: Lookahead Splitter Options

28

5.2. Benchmarks

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 240 260 280 300 320 340 360 380 400

ti
m

e
 i
n

 s
e
c
o

n
d

s

solved instances

VSIDS

LA-1

LA-2

LA-3

LA-4

LA-5

Figure 11: Training Set Creation

The decision heuristic RWH has been discussed in detail in Section 3.3. The calculation
of a literal score requires quite a number of multiplications and divisions. It is possible
that the calculation could overflow or underflow due to limited expressiveness of the values
that a computer could handle. For this particular case, the score of a literal is bounded by
upper and lower limit. The values for upper and lower bound are taken from the technical
report [AF10], see Appendix A for exact values.
Unit propagation is the heart of a DPLL based SAT solver and the speed of unit

propagation is inversely proportional to the number of clauses. The lookahead splitter
with learning option learns quite a number of clauses, making the overall performance of
the lookahead splitter slower. To cater this problem, I remove all of the local learnt clauses
if their count exceeds certain limit. The reason for removing all local learnt clauses is that
their number grows very fast (many clauses can be learnt by performing a lookahead on
single variable) and selective deletion of clauses would have taken a lot of time. This limit
in the implementation is set large enough such that it provides the opportunity to utilize
the local learnt clauses before deletion. This limit is equal to the number of the variables
in the formula.

5.2. Benchmarks

The benchmark for performing the tests consists of the whole SAT Challenge 2012
[JLBRS12] (601 instances) and this set of instances is called test set. The tests run
on 16 core AMD Opteron 6274 CPUs with 2.2 GHz. To reduce the time to find the
reasonably good configuration for lookahead splitter, a smaller subset called training set
is chosen from the whole test set. Following is the procedure used to create the training
set:

• Perform tests with 3600 seconds time-out and 4 threads on the test set with 6
different configurations (1 VSIDS splitter and 5 LA splitter configurations).

• Divide the test set in to three disjoint subsets:

29

5.3. Parameter Tuning

1. Hard set – the instances which are timed out by all configurations

2. Medium set – the instances whose solution time is between closed interval
(600, 3600) seconds by any of the configurations.

3. Easy set – the instances whose solution time is between closed interval (0, 600)
seconds by all configurations.

• Take 10%, 50% and 10% of the hard, medium and easy set respectively.

Using this procedure, 109 instances were selected. Figure 11 shows a cactus plot of the
6 configurations used for selecting the instances for training set. The x-axis shows the
number of solved instances and the y-axis shows the instance runtime. The area below
the doted line at time 600 contains the easy set and the area above is that doted line
contains the medium set.

5.3. Parameter Tuning

Parameter tuning is about finding a good configuration of parameters (for lookahead
splitter, parameters can be seen as options shown in Figure 10). Parameter tuning is
performed on the training set. It is very difficult to play with every parameter (lookahead
splitter options, see Figure 10) and tune them in this work. I take the parameter values
from other references which have been studied before. Some of the parameters which
have not been studied in the context of iterative partitioning with scattering, are tried to
be tuned. For a complete list of parameters of the lookahead splitter, see Appendix A.
Before I start with the tuning of parameters, the metrics used for evaluation are given
below:

• Solved instance: the number of solved instances, higher is better.

• Solved SAT: the number of solved instances which are satisfiable, higher is better.

• Solved UNSAT: the number of solved instances which are unsatisfiable, higher is
better.

• Median runtime: the median of runtime over all instances, lower is better.

• Mean split time: the mean of the time used by each call of splitter, lower is better.

• Score: the score of a configuration using the ranking by [VG11], higher is better.

Configuration Solved instances Median Runtime Score
diff1 85 956.65s -12
diff2 83 808.83s 3
diff4 88 707.17s 9

Table 2: Statistics of decision heuristic

30

5.3. Parameter Tuning

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

d
if
f1

diff2

Figure 12: Runtime comparision of decision heuristic

The metric score needs a bit of explanation. The score takes not only the number of solved
instances into account, but also the solving time of each instance with some restriction.
The restriction is that between two configurations, the score does not consider solving
time of an instance if the difference between the solving time by the two configurations is
less than 60s. It is clear from the Figure 12 that neither the decision heuristic diff1 nor
the diff2 is better overall. The x-axis in the plot shows the instance runtime solved by
the configuration diff2 with decision heuristic diff2, while y-axis in the same show the
instance runtime solved by of the configuration diff1 with decision heuristic diff2. The
parameters of the two configurations are the same except for the decision heuristic. On
some instances, the configuration diff1 performs better and on some the configuration
diff2 performs better. Table 2 show that the configuration diff1 has an edge over the con-
figuration diff2 due to higher number of solved instances. The former solves 85 instances
while the latter solves 82 instances. On the other hand, the configuration diff2 seems
faster than the configuration diff1 due to better median runtime i.e., 808.83s compared to
956.65s. This gives the intuition to combine the decision heuristics diff1 and diff2. A
simple way is to combine them linearly. Following is the new combined decision heuristic
called diff4:

diff4 = 0.3 ∗ diff1 + 0.7 ∗ diff2 (1)

The higher weight to diff2 in Equation (1) is due to better median and score, see Table 2.
Another reason to give more weight to diff2 is due to the importance of diff2 over diff1
found in literature [BHvMW09]. In Table 2, the configuration diff4 is a lookahead splitter
configuration same as diff1 and diff2 with only difference of decision heuristic diff4. The

31

5.3. Parameter Tuning

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

L
o

w
 r

e
d

u
c
ti
o
n

High reduction

Figure 13: Runtime comparision of polarity – High reduction vs Low reduction

configuration diff4 outperforms both of the configurations diff1 and diff2 by solving 88
instances compared to 85 and 83. The median runtime of the configuration diff4 is 707.17s
which is better than 956.65s and 808.83s of the configurations diff1 and diff2 respectively.
The score of the configuration diff4 is 9, better than the score of configurations diff1 and
diff2 which are −12 and 3 respectively. All the measure in Table 2 support the decision
heuristic diff4 as the tuned value for the variable decision heuristic.
The next parameter to tune is polarity heuristic. I have experimented with different

polarity heuristic and the most interesting case is discussed here which is the comparison
between high reduction and low reduction. Figure 13 shows a cross plot of two configu-
rations namely high reduction and low reduction. The only difference between these two
configurations is the polarity heuristic. The former uses high reduction polarity heuristic
and later uses low reduction polarity heuristic. The x-axis shows the runtime of instance
solved by the configuration high reduction and y-axis shows the runtime of instance solved
by low reduction. It is quite clear that the configuration low reduction is outperforming
the configuration high reduction (see the number of timeout instances of high reduction).

Configuration Solved Instances Median Runtime Mean Split Time Score
No Learn 86 1024.26s 42.24s -8
Local Learn 83 863.42s 32.63s -6
Partition Learn 85 629.17s 22.93s 14

Table 3: Statistics of learning options

32

5.3. Parameter Tuning

One possible reason for better performance of low reduction over high reduction polarity
heuristic is that by choosing low reduction polarity the probability of making a mistake
is less than choosing higher reduction. This less mistake probability for lower reduction
polarity is due to the less number of assigned variables. The tuned value for polarity
heuristic is set to be low reduction.
The behaviour of the learning options in lookahead splitter is analysed now. The

configurations used for this purpose have the same parameter options except for the
learning options. An important detail about the configuration partition learn is that the
literal equivalence is set to be local and the reason for that is the lookahead splitter
could find huge number of literal equivalences which are only stored locally as binary
clauses but not included in splittings. Although the configuration no learn has solved
1 more instance but it is a lot slower than than the configuration partition learn. The
configuration partition learn has median runtime of 629.17s which is much faster than
median runtime 1024.26s of the configuration no learn and 863.42s of the configuration
local learn. The score also tell the same story and the scores are 14, −8, −6 for the
configurations partition learn, no learn and local learn respectively. The mean split time is
an important measure and it should not be too high because this might cause starvation
(there can be a situation when there are no splittings to solve and the splitter is taking too
much time to produce splittings). The lowest mean split time is given by the configuration
partition learn which is 22.93s while the configurations no learn and local learn give higher
mean split time i.e., 42.24s and 32.63s. The configuration partition learn gives the tuned
values for the learning options of the lookahead splitter.

The next thing is to see whether it is worth to use double lookahead in the lookahead
splitter. For this purpose, two similar lookahead splitter configurations are used which only
differ on the use of double lookhead. The configuration woDLA is a lookahead splitter
configuration without the double lookahead option, while the configuration wDLA is a
lookahead splitter configuration with double lookahead option turned on. Table 4 shows
the statistics of the configurations woDLA and wDLA. It shows that the use of double
lookahead option in the lookahead splitter is not giving significant benefit, rather it is
slowing down the performance. The number of solved instances is 84, median runtime
is 776.87s and score is −4 by the configuration wDLA which is slightly bad than the
configuration woDLA having 85 number of solved instances, 629.17s median runtime and 4
score. The big difference is seen in the mean split time which is 50.52s for the configuration
wDLA compared to 22.93s for the configuration woDLA. As discussed earlier, the high
mean split time could cause starvation. The high mean split time for the configuration
wDLA could be due to the trigger value (condition when double lookahead is performed) as
the success rate of double lookahead is only 29.33%. The double lookahead is successful

Configuration Solved
Instances

Median
Runtime

Mean Split
Time

Double LA
Success Rate

Score

woDLA 85 629.17s 22.93s - 4
wDLA 84 776.87s 50.52s 29.33% -4

Table 4: Statistics of double lookahead

33

5.4. Evaluation

if it finds conflict on both branches of a variable. Currently the trigger value is set
to 0.17 ∗ |atom(F)| with adaptive update function. I believe that with a trigger value
which increases the success rate of double lookahead to more than 50%, then the overall
performance of the configuration wDLA can be improved. I choose not to use double
lookahead for now and leave the task of finding better trigger value for future work.

5.4. Evaluation

The final experiments are run with 16 threads in parallel, 16 GB memory limit and 3600s
walltime limit over the whole test set of 601 instances. Following are the configuration
used for the final experiments:

1. RAND: uses scattering method with random decision literal for splitter.

2. VSIDS: uses scattering method with VSIDS decision heuristic for splitter.

3. LA-simp: uses simple method with LA decision heuristic for splitter.

4. LA-scat: uses scattering method with LA decision heuristic for splitter.

All the above mentioned configurations use number of conflict to limit the solve time
which is equal to 512000. The number of splittings to be produced per splitter call is
set to 8 and sequence cutoff heuristic is used for the configurations RAND, VSIDS and
LA-scat. The configuration LA-simp used a static cutoff heuristic which is set to the value
4, i.e. LA-simp will go up to level 4 and will produce at most 16 splittings per splitter call
(most of the time the number of splittings produced are less than 16). The configurations
LA-simp and LA-scat both use diff4 decision heuristic, lower reduction polarity heuristic,
RWH pre-selection heuristic, no double lookahead and all learning options set to partition
except for literal equivalence which is set to local (for complete options of LA splitter, see
Figure 10).
Table 6 shows the number of solved instances, with median runtime and score of the

4 configurations. Number of solved instances is further divided into satisfiable (SAT)
and unsatisfiable (UNSAT) ones. The configuration LA-scat solves the most number of
instances and solves 20 more instances compared to the configuration VSIDS. The median
runtime of the configuration LA-scat is better than the configuration VSIDS, i.e. 255.93s
compared to 278.12s. The score of LA-scat is highest among these configurations and it
indicates that LA-scat is a lot better than the configuration VSIDS due to the big differ-
ence of scores 155 to 30. Similarly the configuration LA-simp with 428 solved instances
and 140 score looks better than the configuration VSIDS with 414 solved instances and

Configuration Solved SAT UNSAT Median Runtime Score
RAND 352 236 116 588.01s -325
VSIDS 414 246 168 278.12s 30
LA-simp 428 250 178 286.04s 140
LA-scat 434 249 185 255.93s 155

Table 5: Number of solved instances

34

5.4. Evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 300 320 340 360 380 400 420 440

ti
m

e
 i
n

 s
e
c
o

n
d

s

solved instances

RAND
VSIDS

LA-simp
LA-scat

Figure 14: Solved instances and runtime

30 score, but the configuration VSIDS has better median runtime 278.12s than the config-
uration LA-simp with median runtime 286.04s. Although, the configuration LA-simp and
the configuration LA-scat differ in terms of partitioning method, the former uses simple
method while the latter uses scattering method, but both of them beat the configuration
VSIDS and both use lookahead decision heuristic. With these results, it can be concluded
that lookahead is better decision heuristic than VSIDS for creating splittings and looka-
head splitter with scattering is faster than VSIDS splitter with scattering. Figure 14 gives
a bird’s eye view of the 4 configurations. The x-axis shows the number of solved instances
and the y-axis shows the runtime of an instance. The configuration LA-scat is a clear
winner in the figure. The results negate the conclusion of [HJN10] that VSIDS is better
than lookahead for splitting.
Although the configuration LA-simp beats the configuration LA-scat in number of solved

SAT instances by 1 (Table 6), but seeing the configuration RAND which solved 236 SAT
instances suggests that one could get lucky in solving SAT instances and we can ignore the
tiny lead of the configuration LA-simp over LA-scat. The main competition lies in solving
UNSAT instances, which is clearly won by LA-scat. The lead in solving UNSAT instances
by the configuration LA-scat over the configuration LA-simp, i.e. 185 to 178, supports the
claim by [HJN10] that scattering method is better approach for solving UNSAT instances
than the simple method.

Configuration Mean Splittings Count Mean Split time CPU Ratio
RAND 65.01 0.60s 14.71
VSIDS 42.21 22.20s 14.00
LA-simp 123.83 15.50s 14.05
LA-scat 80.46 12.30s 13.69

Table 6: Mean time to split and CPU ratio

35

5.4. Evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

V
S

ID
S

LA-scat

Figure 15: Lookahead splitter vs VSIDS splitter

Table 6 shows the mean of splittings produced, mean split time and CPU ratio of
configurations. The CPU ratio tells how many cores are used in average for solving an
instance. The configuration LA-scat has mean split time of 12.30s which is much lower
than the configuration VSIDS with mean split time of 22.20s and considering the number
of solved instances, it can be said that LA-scat is computationally efficient partitioning
technique. The configuration RAND has the highest CPU ratio 14.71 and one possible
reason is that it spends less time on creating splittings (mean split time is the lowest 0.60s),
but overall performance of the configuration RAND is worse than the other configurations.
This bad performance may be interpreted that the time to split should be large enough
to produce good splittings. Seeing from the mean splitting count of the configurations
suggest that this measure could be misleading in judging the best configuration. In current
scenario, the configuration VSIDS has the least value for mean splittings count, i.e. 42.21
which is almost half of the configuration LA-scat same value 80.46, but as it has been
discussed earlier that the overall performance of LA-scat is a lot better than VSIDS.
The configurations LA-scat and VSIDS are compared in Figure 15. The x-axis shows the

runtime of the configuration LA-scat while the y-axis show the runtime of the configuration
VSIDS. This figure tells the same story discussed earlier that the configuration LA-scat
is overall better and faster than the configuration VSIDS, but it also shows that there
are few instances where the configuration VSIDS is faster or sometimes better (solved
by the configuration VSIDS and timed out by the configuration LA-scat). These few
instances which are solved only or solved faster by the configuration VSIDS compared
to the configuration LA-scat gives the motivation to have a configuration selector. The
job of a configuration selector is to select a configuration based on some feature and

36

5.4. Evaluation

researching a good configuration selector could be a possible future direction of this work.
The configuration selector can select the configuration once at the start or at each iterative
call to splitter. The latter approach can lead to some interesting results.

37

6. Conclusion

6. Conclusion
In this work, I have discussed lookahead techniques for iterative search space partitioning
and shown some nice results. I have shown statistically and also with a novel ranking
method [VG11] that the conclusion of Hyvärinen [HJN10] seems to be wrong and in
fact lookahead is a better method than VSIDS for iterative search space partitioning. In
terms of solved instances, the iterative search space partitioning with lookahead solves
20 more instances than the iterative search space partitioning with VSIDS. Another claim
by Hyvärinen is that the scattering method is better than the simple partitioning method
for solving unsatisfiable instances and this work supports his claim. Scattering method
solved 185 unsatisfiable instances while simple partitioning method solved 178 unsatisfiable
instances. Another important result is that the VSIDS splitter performs very well on few
instances where the lookahead splitter performs poorly, which gives the motivation to look
into some hybrid approach.
Some worth mentioning minor results are that the lower reduction polarity heuristic

for scattering seems good strategy and the decision heuristic which counts the number
of assigned variables is not the optimal one. A combined decision heuristic is given in
this work which is based on counting the number of assigned variables and approximated
number of newly created binary clauses. This combined decision heuristic seems to give
good results. Another result is that the local reasoning of lookahead seems to improve
overall performance of lookahead splitter.
Future directions of this work can be the following:

1. Designing a good configuration selector that can choose between VSIDS and looka-
head splitter configurations based on some instance features.

2. Finding a better trigger method for double lookahead that could improve the success
rate of double lookahead and the overall performance of lookahead splitter.

3. It would be interesting to see a Tabu scattering method (idea from stochastic local
search), meaning that the scattering does not decide on a variable which has already
been decided in some splitting earlier.

38

References

References

[ABL+10] Josep Argelich, Daniel Le Berre, Inês Lynce, João P. Marques Silva, and
Pascal Rapicault. Solving linux upgradeability problems using boolean opti-
mization. In Inês Lynce and Ralf Treinen, editors, LoCoCo, volume 29 of
EPTCS, pages 11–22, 2010.

[AF10] Dimitrios Athanasiou and Marco Alvarez Fernandez. Recursive weight heuris-
tic for random k-sat. Technical report, Delft University of Technology, 2010.

[BBD+12] Adrian Balint, Anton Belov, Daniel Diepold, Simon Gerber, Matti Järvisalo,
and Carsten Sinz, editors. Proceedings of SAT Challenge 2012: Solver
and Benchmark Descriptions, volume B-2012-2 of Department of Computer
Science Series of Publications B. University of Helsinki, 2012. ISBN ISBN
978-952-10-8106-4.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without bdds. In Proceedings of the 5th Interna-
tional Conference on Tools and Algorithms for Construction and Analysis
of Systems, TACAS ’99, pages 193–207, London, UK, UK, 1999. Springer-
Verlag.

[BHvMW09] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications. IOS Press, February 2009.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM.

[CP89] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem.
Manage. Sci., 35(2):164–176, February 1989.

[DD01] Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient
solving of hard 3-sat formulae. In Proceedings of the 17th international joint
conference on Artificial intelligence - Volume 1, IJCAI’01, pages 248–253,
San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[DD04] Gilles Dequen and Olivier Dubois. kcnfs: An efficient solver for random k-
sat formulae. In Enrico Giunchiglia and Armando Tacchella, editors, Theory
and Applications of Satisfiability Testing, volume 2919 of Lecture Notes
in Computer Science, pages 305–306. Springer Berlin / Heidelberg, 2004.
10.1007/978-3-540-24605-3_36.

[DKW08] V. D’Silva, D. Kroening, and G. Weissenbacher. A survey of automated
techniques for formal software verification. Trans. Comp.-Aided Des. Integ.
Cir. Sys., 27(7):1165–1178, July 2008.

39

References

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. J. ACM, 7(3):201–215, July 1960.

[Fre95] Jon William Freeman. Improvements to propositional satisfiability search
algorithms. PhD thesis, Philadelphia, PA, USA, 1995. UMI Order No.
GAX95-32175.

[GHM+12] Peter Großmann, Steffen Hölldobler, Norbert Manthey, Karl Nachtigall,
Jens Opitz, and Peter Steinke. Solving periodic event scheduling problems
with sat. In He Jiang, Wei Ding, Moonis Ali, and Xindong Wu, editors,
IEA/AIE, volume 7345 of Lecture Notes in Computer Science, pages 166–
175. Springer, 2012.

[Goe10] Asvin Goel. A column generation heuristic for the general vehicle routing
problem. In Proceedings of the 4th international conference on Learning
and intelligent optimization, LION’10, pages 1–9, Berlin, Heidelberg, 2010.
Springer-Verlag.

[Heu08] Marijn J.H. Heule. SmArT solving: Tools and techniques for satisfiability
solvers. PhD thesis, TU Delft, 2008.

[HJN06] Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. A distribution
method for solving sat in grids. In Proceedings of the 9th international
conference on Theory and Applications of Satisfiability Testing, SAT’06,
pages 430–435, Berlin, Heidelberg, 2006. Springer-Verlag.

[HJN10] Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Partitioning sat
instances for distributed solving. In Proceedings of the 17th international
conference on Logic for programming, artificial intelligence, and reasoning,
LPAR’10, pages 372–386, Berlin, Heidelberg, 2010. Springer-Verlag.

[HKWB12] Marijn J.H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube
and conquer: Guiding cdcl sat solvers by lookaheads. In Accepted for HVC
2011, 2012. Accepted for HVC 2011.

[HM12a] Antti Eero Johannes Hyvärinen and Norbert Manthey. Designing scalable
parallel sat solvers. In Alessandro Cimatti and Roberto Sebastiani, editors,
SAT, volume 7317 of Lecture Notes in Computer Science, pages 214–227.
Springer, 2012.

[HM12b] Antti Eero Johannes Hyvärinen and Norbert Manthey. Splitter – a scalable
parallel sat solver based on iterative partitioning. In Balint et al. [BBD+12],
page 62. ISBN ISBN 978-952-10-8106-4.

[HMN+11] Steffen Hölldobler, Norbert Manthey, Hau Van Nguyen, Julian Stecklina,
and Peter Steinke. A short overview on modern parallel SAT-solvers. In

40

References

Proceedings of the International Conference on Advanced Computer Science
and Information Systems, pages 201–206, 2011.

[HV95] John N. Hooker and V. Vinay. Branching rules for satisfiability. J. Autom.
Reasoning, 15(3):359–383, 1995.

[HvM06] Marijn J.H. Heule and Hans van Maaren. March_dl: Adding adaptive heuris-
tics and a new branching strategy. Journal on Satisfiability, Boolean Model-
ing and Computation, 2:47–59, mar 2006.

[HvM07] Marijn J.H. Heule and Hans van Maaren. Effective incorporation of double
look-ahead procedures. In Joao Marques-Silva and Karem A. Sakallah, edi-
tors, Theory and Applications of Satisfiability Testing - SAT 2007, volume
4501 of Lecture Notes in Computer Science, pages 258–271. Springer, 2007.

[HvM09] Marijn J. H. Heule and Hans van Maaren. Look-Ahead Based SAT Solvers,
chapter 5, pages 155–184. Volume 185 of Biere et al. [BHvMW09], February
2009.

[HW12] Youssef Hamadi and Christoph M. Wintersteiger. Seven challenges in parallel
sat solving. In Jörg Hoffmann and Bart Selman, editors, AAAI. AAAI Press,
2012.

[Hyv11] Antti Eero Johannes Hyvärinen. Improvements to propositional satisfiability
search algorithms. PhD thesis, Helsinki, Finland, 2011. Doctoral Disserta-
tions 118/2011.

[JLBRS12] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. The
international SAT solver competitions. AI Magazine, 33(1):89–92, 2012.

[KS92] Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings
of the 10th European conference on Artificial intelligence, ECAI ’92, pages
359–363, New York, NY, USA, 1992. John Wiley & Sons, Inc.

[LA97] Chu Min Li and Anbulagan. Heuristics based on unit propagation for satis-
fiability problems. In IJCAI (1), pages 366–371. Morgan Kaufmann, 1997.

[Li99] Chu Min Li. A constraint-based approach to narrow search trees for satisfi-
ability. Inf. Process. Lett., 71(2):75–80, July 1999.

[Li03] Chu-Min Li. Equivalent literal propagation in the dll procedure. Discrete
Appl. Math., 130(2):251–276, August 2003.

[LMS06] Inês Lynce and João Marques-Silva. Sat in bioinformatics: Making the
case with haplotype inference. In Armin Biere and Carla P. Gomes, editors,
SAT, volume 4121 of Lecture Notes in Computer Science, pages 136–141.
Springer, 2006.

41

References

[MdWH10] Sid Mijnders, Boris de Wilde, and Marijn J. H. Heule. Symbiosis of search
and heuristics for random 3-sat. In David Mitchell and Eugenia Ternovska,
editors, Proceedings of the Third International Workshop on Logic and
Search (LaSh 2010), 2010.

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an efficient SAT solver. Design Automation Conference, pages 530–
535, 2001.

[MvVW06] Dimosthenis Mpekas, Michiel van Vlaardingen, and Siert Wieringa. The
first steps to a hybrid SAT solver. Technical report, Delft University of
Technology, 2006.

[Nik10] Niklas Sörensson. Minisat 2.2 and minisat++ 1.1. http://baldur.iti.
uka.de/sat-race-2010/descriptions/solver_25+26.pdf, 2010.

[Rou12] Olivier Roussel. Description of ppfolio 2012. In Balint et al. [BBD+12],
page 46. ISBN ISBN 978-952-10-8106-4.

[SS96] João P. Marques Silva and Karem A. Sakallah. Grasp - a new search algo-
rithm for satisfiability. In ICCAD, pages 220–227, 1996.

[SS98] Mary Sheeran and Gunnar Stålmarck. A tutorial on stålmarcks’s proof proce-
dure for propositional logic. In Ganesh Gopalakrishnan and Phillip J. Windley,
editors, FMCAD, volume 1522 of Lecture Notes in Computer Science, pages
82–99. Springer, 1998.

[vdTHB12] Peter van der Tak, Marijn J. H. Heule, and Armin Biere. Concurrent cube-
and-conquer. In Proceedings of the 15th international conference on Theory
and Applications of Satisfiability Testing, SAT’12, pages 475–476, Berlin,
Heidelberg, 2012. Springer-Verlag.

[VG11] Allen Van Gelder. Careful ranking of multiple solvers with timeouts and ties.
In Proceedings of the 14th international conference on Theory and appli-
cation of satisfiability testing, SAT’11, pages 317–328, Berlin, Heidelberg,
2011. Springer-Verlag.

42

http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_25+26.pdf
http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_25+26.pdf

43

A. Lookahead Splitter Parameters
Parameter Description
-split-method Which structure to use. -split-method=0 is simple and

-split-method=1 is scattering
-split-depth Number of decision to be made for each splitting. If

-split-depth=0 and -no-dseq then dynamic cutoff heuristic is
used, if -split-depth=0 and -dseq then sequence based cutoff
heuristic is used.

-dseq Use sequence based cutoff heuristic for scattering; requires
-split-depth=0

-no-dseq Do not use sequence based cutoff heuristic for scattering
-split-thres Threshold for dynamic cutoff heuristic; default is 1
-split-penal Penalty factor for the dynamic cutoff heuristic threshold, if a deci-

sion literal becomes failed literal; default is 0.7
-thres-inc Increment factor for the dynamic cutoff heuristic threshold, applied

in start of the lookahead splitter; default is 0.05
-child-count Number of children (splittings) to produce by scattering method;

default is 8
-la-heur Decision heuristic to be used. -la-heur=0 for diff1, -la-heur=1

for diff2, -la-heur=4 for diff4 and -la-heur=5 for RWH.
Default is 4.

-num-iterat Number of iteration for lookaheadDecide; default is 2.
-dir-prior Direction priority. -dir-prior=0 is for selecting always positive

polarity while -dir-prior=1 is for selecting always negative polar-
ity. -dir-prior=2 is for selecting the polarity with higher reduc-
tion while -dir-prior=3 is for selecting the polarity with lower
reduction. -dir-prior=4 is for selecting random polarity and
-dir-prior=6 for adaptive direction heuristic. Default is 3

-dir-adp-fac Factor for adaptive direction heuristic; default is 0.1
-double-la Use double lookahead for splitting phase; off by default
-no-double-la Do not use double lookahead for splitting phase
-double-decay Decay rate for the double lookahead threshold (trigger); default

is 0.95
-shrk-clause Shrink clauses in start of the lookahead splitter; default is on
-no-shrk-clause Do not shrink clauses in start of the lookahead splitter
-presel-heur Pre-selection to be used. -presel-heur=0 for propz,

-presel-heur=1 for CRA and -presel-heur=2 RWH. Default
is 2.

-presel-fac Factor of the free variable to be used in lookahead; default is 0.1
-presel-min Minimum number of pre-selection variables. Default is 128
-presel-max Maximum number of pre-selection variables. Default is 2048
-h-upper upper bound for the score of RWH; default is 10900
-h-lower lower bound for the score of RWH; default is 0.1
-h-cl-wg Importance weight of a shorter clause; default is 5
-h-maxcl The maximum size of the clause to be used in RWH; default is 7
-h-acc Accuracy of the RWH, number of iterations to perform; default is 9

44

Parameter Description
-fail-lit Failed literal learning options. -nec-assign=0 means it is

turned off. -nec-assign=1 means to use it for local learning.
-nec-assign=2 means use it for local learning as well as push
it to splitting. Default is 2.

-nec-assign Necessary assignment learning options. -nec-assign=0 means it
is turned off. -nec-assign=1 means to use it for local learning.
-nec-assign=2 means use it for local learning as well as push it
to splitting. Default is 2.

-clause-learn Clause learning options. -clause-learn=0 means turned
off. -clause-learn=1 means to use it for local learning.
-clause-learn=2 means to use is for local learning and also push
it to splitting. Default is 2.

-var-eq Literal equivalence options. -var-eq=0 means do not use literal
equivalence option, -var-eq=1 means use literal equivalence for
checking if lookahead on an equivalent literal has been performed
and if yes then do not perform lookahead, -var-eq=2 means to
use -var-eq=1 and add the equivalent literals relation as binary
clauses in the local learnt clauses. Default is 2.

45

46

Declaration
Hereby I certify that this report has been written by me. Any help that I have received in
my research work has been acknowledged. Additionally, I certify that I have not used any
auxiliary sources and literature except for those cited in this report.

Dresden, 12 November 2012

Ahmed Irfan

	Introduction
	Preliminaries and Notation
	Propositional Logic
	Notation

	SAT Solving
	Davis Putnam Logemann Loveland
	Conflict-Driven Clause Learning
	Lookahead
	Decision Heuristic
	Polarity Heuristic
	Pre-selection Heuristic
	Local Learning
	Double Lookahead

	Search Space Partitioning
	Partitioning Methods
	Simple Partitioning Method
	Scattering Partitioning Method

	Cutoff Heuristic

	Specification and Implementation
	Implementation
	Benchmarks
	Parameter Tuning
	Evaluation

	Conclusion
	References
	Lookahead Splitter Parameters

