
Testing Dafny (Experience Paper)
Ahmed Irfan

rfaahm@amazon.com
Amazon Web Services (AWS)

USA

Sorawee Porncharoenwase
sorawee@cs.washington.edu
University of Washington

USA

Zvonimir Rakamarić
zvorak@amazon.com

Amazon Web Services (AWS)
USA

Neha Rungta
rungta@amazon.com

Amazon Web Services (AWS)
USA

Emina Torlak
torlaket@amazon.com

Amazon Web Services (AWS)
USA

ABSTRACT
Verification toolchains are widely used to prove the correctness of
critical software systems. To build confidence in their results, it is
important to develop testing frameworks that help detect bugs in
these toolchains. Inspired by the success of fuzzing in finding bugs
in compilers and SMT solvers, we have built the first fuzzing and
differential testing framework for Dafny, a high-level programming
language with a Floyd-Hoare-style program verifier and compilers
to C#, Java, Go, and Javascript.

This paper presents our experience building and using XDsmith,
a testing framework that targets the entire Dafny toolchain, from
verification to compilation. XDsmith randomly generates anno-
tated programs in a subset of Dafny that is free of loops and heap-
mutating operations. The generated programs include precondi-
tions, postconditions, and assertions, and they have a known verifi-
cation outcome. These programs are used to test the soundness and
precision of the Dafny verifier, and to perform differential testing
on the four Dafny compilers. Using XDsmith, we uncovered 31
bugs across the Dafny verifier and compilers, each of which has
been confirmed by the Dafny developers. Moreover, 8 of these bugs
have been fixed in the mainline release of Dafny.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation.

KEYWORDS
program verification, fuzzing, differential testing

ACM Reference Format:
Ahmed Irfan, Sorawee Porncharoenwase, Zvonimir Rakamarić, Neha Rungta,
and Emina Torlak. 2022. Testing Dafny (Experience Paper). In Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’22), July 18–22, 2022, Virtual, South Korea. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3533767.3534382

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’22, July 18–22, 2022, Virtual, South Korea
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9379-9/22/07.
https://doi.org/10.1145/3533767.3534382

1 INTRODUCTION
The correctness of compilers, static analyzers, and formal verifi-
cation engines is key to ensuring that the programs they compile,
analyze, and verify are correct. Bugs in these tools can have serious
consequences: a soundness bug can cause the tool to accept an
incorrect program, while a precision bug can cause it to reject too
many correct programs. In principle, both kinds of bugs can be elim-
inated through formal verification. In practice, however, the cost
of formal verification remains prohibitive, with teams of experts
taking decades to verify a single toolchain (see, e.g., [32]). This cost
becomes astronomical when the target is an ecosystem of related
tools: a verifier together with a set of compilers for a rich general-
purpose language. In such a setting, effective testing becomes key
to increasing confidence in the correctness of the ecosystem—and
all applications that depend on it for their correctness.

This paper presents our experience developing and applying the
first fuzzing and differential testing framework for Dafny [12, 30],
a high-level programming language equipped with a Floyd-Hoare-
style [16, 23] verifier and compilers to C#, Java, Go, and JavaScript.
Dafny is used broadly for building verified software. For example,
it has been used to prove the correctness of high-level distributed
protocols [22, 24], as well as to build low-level verified systems, such
as a verified storage system [20] and a verified security monitor [14].
The correctness of all of these systems rests on the correctness of
the Dafny verifier and compilers.

Our testing framework, XDsmith, targets the entire Dafny ecosys-
tem, from verification to compilation. The Dafny verifier takes as
input a Dafny program annotated with preconditions, postcondi-
tions, loop invariants, and assertions, and it checks that the program
meets its specification by reducing the verification task to a satisfia-
bility modulo theories (SMT) [4, 5] query. If the verifier accepts the
program, the compilers then translate it to their respective target
languages. XDsmith tests this workflow end-to-end. It works by ran-
domly generating annotated Dafny programs to test the soundness
and precision of the Dafny verifier, and by using these programs
to perform differential testing [34] on the Dafny compilers.

The core technical problem we address in XDsmith is how to
randomly generate annotated programs for testing a Floyd-Hoare-
style verifier. The problem of randomly generating well-formed and
well-typed programs has been studied extensively in prior work,
and we build on the prior tool Xsmith [21] to solve this problem
for the Dafny language. The new problem that XDsmith addresses
is that of generating annotations for these programs that can reveal
soundness and precision bugs in the verifier. In particular, XDsmith

556

https://orcid.org/0000-0001-7791-9021
https://orcid.org/0000-0003-3900-5602
https://orcid.org/0000-0001-7946-0162
https://orcid.org/0000-0001-5143-8940
https://orcid.org/0000-0002-1155-2711
https://doi.org/10.1145/3533767.3534382
https://doi.org/10.1145/3533767.3534382

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Ahmed Irfan, Sorawee Porncharoenwase, Zvonimir Rakamarić, Neha Rungta, and Emina Torlak

must be able to annotate a program with random specifications that
the program satisfies as well as those that the program violates. If
the verifier accepts the latter, the generated test case demonstrates
a soundness bug, and if the verifier rejects the former, the test
case demonstrates a potential precision bug (or reveals an expected
source of incompleteness in the verifier).

However, generating such annotations for arbitrary Dafny pro-
grams is undecidable. As a general-purpose language, Dafny in-
cludes loops, recursion, non-linear integer arithmetic, quantified
formulas, andmany other features that make reasoning about Dafny
programs undecidable. Moreover, even if we restricted our test gen-
erator to a decidable subset of Dafny, the resulting problem would
still be intractable for annotations that generalize to all inputs. In
fact, it would amount to building a program synthesizer and an
oracle verifier for the chosen subset of Dafny—a daunting technical
challenge for all but the narrowest subsets of Dafny that are least
interesting to test (e.g., loop-free bitvector programs).

To make the annotation problem tractable for a broad subset of
Dafny, we make two key design choices. First, we focus on Dafny
programs that are free of loops and recursion, but that include
arrays, sequences, maps, sets, multisets, integers, Booleans, and
strings. Second, we focus on generating annotations that are free of
quantifiers and that are not general: instead, they are constructed so
that the program satisfies or violates them on a specific (randomly
chosen) execution. Crucially, these two choices reduce the problem
of verifying the resulting annotated program to testing. Because
the program is loop-free, it is guaranteed to terminate. Because
the annotations apply to a known execution, we can determine
whether the Dafny verifier should accept or reject the annotated
program simply by running it. Finally, our design enables us to
formulate this carefully restricted annotation generation problem
as one of example-based syntax-guided synthesis [2, 19], and to
solve it using an off-the-shelf synthesis tool [39].

We performed an extensive case study to evaluate our approach.
We continuously applied XDsmith on Dafny over a period of three
months. XDsmith generated random annotated Dafny programs
and used them to test the Dafny verifier and compilers. In the pro-
cess, we discovered 31 previously unknown bugs, all of which have
been confirmed by Dafny developers. The bugs include soundness
and precision issues in the verifier, as well as semantics-related
issues in the compilers. We discovered 10 of these bugs by testing
the verifier and the rest by testing the compilers. Eight bugs have
already been fixed in the Dafny mainline release.

In summary, this paper makes the following contributions: (1) an
approach for generating annotated programs to test Floyd-Hoare-
style verifiers and their accompanying compilers; (2) an implemen-
tation of this approach in the XDsmith framework that targets the
Dafny verifier and compilers; and (3) an evaluation demonstrating
the effectiveness of XDsmith. Our results are encouraging and point
to the value of developing tools for testing Floyd-Hoare-style verifi-
cation ecosystems. While this paper and our implementation target
Dafny, the core testing problem and ideas presented here apply
more generally to verification toolchains that use Floyd-Hoare-
style reasoning. We hope that the paper inspires further research
into this important problem.

2 OVERVIEW OF XDsmith
XDsmith aims at increasing confidence in the Dafny ecosystem
by finding bugs in the Dafny verifier and compilers. (The source
code of XDsmith is publicly available at https://github.com/dafny-
lang/xdsmith.) This section presents an overview of the XDsmith
design and workflow. We begin with a short introduction to the
Dafny language and verifier, then state the problem of testing Dafny
components, and finally describe, at a high level, how XDsmith ad-
dresses this problem. Section 3 presents the details of the XDsmith’s
algorithms.

2.1 Brief Introduction to Dafny
Dafny is a high-level programming language designed from the
ground up with verification in mind. It includes standard constructs
for writing object-oriented, functional, and imperative code, and
on top of those, it includes dedicated constructs for writing specifi-
cations and reasoning about program correctness. The basic specifi-
cation constructs include preconditions, postconditions, and asser-
tions. These annotations express predicates on program state, writ-
ten in (a superset) of first-order logic. The Dafny verifier checks that
an annotated program meets its specification on all possible inputs.

Methods. To illustrate, consider the following toy procedure that
converts integers 1 and 0 to Boolean values true and false:

1 method BitToBool(i: int)

2 returns (b: bool)

3 {

4 if (i == 1) {

5 b := true;

6 } else {

7 assert i == 0;

8 b := false;

9 }

10 print b;

11 }

Procedures are called methods in Dafny, and they encapsulate im-
perative code. All method inputs and outputs are given explicit
types. Dafny lets us name outputs as well as inputs to a procedure,
and the result of the procedure is the final value of the output vari-
able. It is easy to see that our procedure returns true when the
input is 1 and false when the input is 0.

Assertions. While BitToBool seems to do what we intended, it
is not quite correct. In particular, the Dafny verifier rejects it and
flags the assertion on line 7. The problem is that this assertion holds
only if the method is called with values 0 or 1. If we called it with 2,
the assertion would fail. The verifier detects this violation, letting
us know that it cannot prove the assertion for all inputs.

Preconditions. To fix the problem, we write a precondition to tell
the verifier that 0 and 1 are the only allowed inputs to BitToBool:

1 method BitToBool(i: int)

2 returns (b: bool)

3 requires i == 0 || i == 1

4 { ... }

557

https://github.com/dafny-lang/xdsmith
https://github.com/dafny-lang/xdsmith

Testing Dafny (Experience Paper) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

The verifier can prove the assertion for this restricted set of inputs,
and it accepts the program. As usual in Floyd-Hoare-style proofs,
the verifier will enforce the precondition for all calls to BitToBool.

Modular verification. Now that our method verifies, suppose that
we want to use it to convert some bits to Booleans as follows:

15 method Main() {

16 var t := BitToBool(1);

17 var f := BitToBool(0);

18 assert t;

19 assert !f;

20 }

Having called BitToBool with correct inputs, we expect the asser-
tions on lines 18 and 19 to hold. But the verifier cannot prove this,
so it rejects the program.

The problem is that Dafny verifies programs in amodular fashion.
When reasoning about the callers of a method, the verifier ignores
the method’s body, and instead uses the method’s specification—its
type signature, preconditions, and postconditions. In our example,
the verifier knows only that BitToBool produces a Boolean value,
which is clearly not enough to prove that the Main assertions hold.

Postconditions. To fix the problem, we write a postcondition for
BitToBool that specifies which Boolean value is returned:

1 method BitToBool(i: int)

2 returns (b: bool)

3 requires i == 0 || i == 1

4 ensures b == (i == 1)

5 { ... }

Given this postcondition, verification succeeds for both BitToBool
and Main, guaranteeing that the program as a whole satisfies its
specification—modulo any bugs in the Dafny verifier and compilers.

2.2 Testing Dafny Verifier and Compilers
A verification ecosystem like Dafny, which includes a verifier and
compilers, can suffer from three broad categories of bugs: compiler
bugs, soundness bugs, and precision bugs. While there is a large
body of previous work on compiler bugs (see, e.g., [42]), discovering
soundness and precision bugs in verifiers is a less explored area.
However, soundness and precision bugs are critical. Soundness bugs
affect the correctness of the verifier, and they can invalidate the
correctness guarantees provided by the Dafny ecosystem. Precision
bugs affect the usability of the verifier and can be frustrating to
developers. XDsmith aims to test in particular for both of these
kinds of bugs, in addition to the more general compiler bugs.

Compiler bugs. Compiler bugs can be broadly categorized as
crashes, semantic issues, or malformed target programs. A correct
compiler preserves the semantics of the source program in the
target code: both the source and target exhibit the same behaviors
on all possible inputs. To demonstrate a semantic compiler bug,
XDsmith must produce a correctly annotated source program that
behaves differently from the compiled target program on some
input. Malformed target programs, on the other hand, cannot even
be parsed by an off-the-shelf compiler for a target language.

Soundness bugs. Our toy program, as well as real applications of
Dafny, trust the Dafny verifier to be sound. A sound verifier admits
an annotated program only if it can prove that the program meets
its specification. To demonstrate a soundness bug in the Dafny
verifier, XDsmith must produce an annotated program that violates
its specification but is accepted by the verifier.

Precision bugs. Like all sound verifiers for non-trivial languages,
the Dafny verifier is incomplete in that it may reject correctly an-
notated programs. These false alarms are usually called precision
issues. Some precision issues are inevitable due to the incomplete-
ness of the underlying theorem prover. But some are considered
bugs—for example, rejecting the annotation assert true. To demon-
strate a potential precision bug, XDsmith must produce a correctly
annotated program that is rejected by the verifier.

2.3 XDsmith Components and Workflow
Figure 1 illustrates theworkflow that XDsmith employs to search for
bugs in Dafny. The framework consists of three main components:
the test generator, the verification tester, and the differential tester
for the compilers.

Given a source of randomness, the test generator produces a
stream of random Dafny tests. Each test takes the form of an an-
notated program and the expected verification outcome for that
program—whether it satisfies or violates its specification. The entry
point to the test program is the Main method, which invokes other
methods in the program with desired concrete values. Because the
generator must produce both the annotated program and its ex-
pected verification outcome, XDsmith limits the test programs to a
carefully chosen subset of the Dafny language. The key challenge
is to keep this subset large enough to test the Dafny ecosystem
in interesting ways, while keeping it limited enough to be able to
decide the verification outcome without building an oracle verifier.

Figure 1 shows a test program generated by XDsmith. The pro-
gram consists of a set of annotated methods, which are transitively
called by the Main method. Each called method is annotated with
precise preconditions and postconditions of the form 𝑥 == 𝑣 , where
𝑥 is an input or output variable and 𝑣 is a concrete value. These an-
notations are maximally precise in that they describe the behavior
of a method on a specific input. XDsmith generates them by simply
running the program from the Main method, and recording the
input and output of each called method. Methods can also contain
assertions, which are random propositions about the method’s state.
XDsmith uses program synthesis to generate these assertions so
that they have a specific outcome (true or false) in the program’s
main execution. In our example, all of the generated assertions eval-
uate to true, and the test program should be accepted by the verifier.

The verification tester consumes test programs and submits them
to the Dafny verifier. If the verifier accepts a program that violates
its specification, the tester reports a soundness bug. If the verifier
rejects a correct program, the tester reports a potential precision
bug. Otherwise, the program is both correct and accepted by the
verifier, and the verification tester passes it to the compiler tester.

The compiler tester is based on differential testing [34]. It com-
piles the test program with each of the available compilers, runs the
resulting target code, and looks for discrepancies in their (printed)
outputs. As we will see in Section 3.2, XDsmith uses one of these

558

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Ahmed Irfan, Sorawee Porncharoenwase, Zvonimir Rakamarić, Neha Rungta, and Emina Torlak

compilers as the ground truth for generating decidable program
annotations, thereby comparing the verifier semantics to the con-
crete semantics of the ground truth compiler. Differential testing
then tests the compilers against each other. The differential tester
reports a bug if at least two of the target programs exhibit different
behaviors, or if a target program crashes.

3 GENERATING RANDOM TEST PROGRAMS
The XDsmith test generator solves the core technical challenge at
the heart of the Dafny testing problem: how do we generate an
annotated Dafny programwith a known verification outcome, with-
out having to build a verification oracle? Our solution tackles this
challenge in two stages: (1) program generation and (2) annotation
generation. The program generator uses the Xsmith [21] frame-
work to produce correct Dafny programs without annotations. The
annotation generator then uses a combination of random testing
and example-based synthesis to produce both correct and incorrect
annotations for the resulting program (for precision, soundness, and
compiler testing). This section describes the two stages in detail.

3.1 Generating Programs Without Annotations
The Dafny verifier checks every program against two kinds of cor-
rectness constraints: the explicit specifications provided as program
annotations, and the implicit specifications imposed by the Dafny
semantics. For example, the semantics requires every program to
terminate and to be free of common runtime errors, such as division
by zero, index out of bounds accesses, and null dereferences. The
verifier rejects programs that cannot be proven to satisfy these con-
straints. So, to generate correct programs without annotations, our
program generator must be able to produce code that is not only
syntactically well-formed and well-typed, but that also satisfies the
implicit correctness constraints imposed by the Dafny semantics.

To achieve this, we use Xsmith [21] to generate well-formed and
well-typed programs in a restricted subset of the Dafny language
that satisfies Dafny’s implicit semantic constraints by construction.
This subset, which we call XDafny, guarantees termination by omit-
ting loops and recursion. We also exclude unsafe operations such as
indexing into an arbitrary sequence with an arbitrary index. Instead,
XDafny programs use safe wrapper functions to access potentially
unsafe operations (Figure 2). Finally, we disallow method param-
eters with reference types (e.g., arrays), because Dafny prevents
most uses of such parameters in the absence of reads and modifies

annotations. What remains is a rich subset of Dafny that includes
control flow, local side effects (e.g., printing), methods, functions,
basic types (Booleans, integers, and strings), container types (sets,
sequences, and maps), and array types. The program in Figure 1 be-
longs to this subset, and it was produced by our program generator.

The generator works by instantiating the Xsmith [21] framework
with an executable specification of the XDafny grammar and type
constraints. Xsmith is a domain-specific language embedded in
Racket [13, 15]. It takes as input a language grammar and attributes,
such as types, and then randomly generates an AST conforming to
the grammar and constraints. The framework operates by adding
a hole into the grammar, initializing the generated AST to a hole
node, and repeatedly mutating the tree by replacing any remaining
hole with a node picked from the grammar (which could potentially

Algorithm 1 GenerateSpecifications(𝑃 , valid)
1: 𝑃𝑇 ← FlattenMethods(𝑃)
2: ⟨𝑀𝑒𝑥𝑒𝑐 , 𝑃𝑟𝑖𝑛𝑡𝑒𝑥𝑒𝑐 , 𝜇⟩ ← RunProgram(𝑃𝑇)
3: for all𝑚 ∈ Methods(𝑃𝑇) do
4: if𝑚 ∈ 𝑀𝑒𝑥𝑒𝑐 then
5: 𝑃𝑇 ← AddPrePost(𝑃𝑇 ,𝑚, 𝜇)
6: else
7: 𝑃𝑇 ← AddPrePost(𝑃𝑇 ,𝑚, 𝑓 𝑎𝑙𝑠𝑒)
8: end if
9: end for
10: 𝐴𝑠𝑠𝑒𝑟𝑡𝑠 ← GenAssertions(𝜇, 𝑃𝑟𝑖𝑛𝑡𝑒𝑥𝑒𝑐 , valid)
11: for all 𝑝 ∈ PrintStmt(𝑃𝑇) do
12: if 𝑝 ∈ 𝑃𝑟𝑖𝑛𝑡𝑒𝑥𝑒𝑐 then
13: 𝑃𝑇 [𝑝] ← ‘p; assert 𝐴𝑠𝑠𝑒𝑟𝑡𝑠 (𝑝);’
14: else
15: 𝑃𝑇 [𝑝] ← ‘p; assert false;’
16: end if
17: end for
18: return 𝑃𝑇

introduce more holes), subject to attribute constraints. This process
continues until there are no holes left. In our case, the final AST
is a set of XDafny methods and functions, with a no-argument
Main method serving as the entry point to the program. The gen-
erator extends every method in this AST with a print statement,
which writes the method’s output value to standard output. We
use the printed output to generate annotations, and to compare the
behavior of Dafny compilers during differential testing.

3.2 Generating Program Annotations
This section presents our approach for annotating XDafny pro-
grams with assertions, preconditions, and postconditions. Our ap-
proach exploits the fact that every XDafny program has exactly one
execution. To see why, recall from Section 3.1 that each XDafny pro-
gram has a Main method that takes no arguments and that serves
as the program’s entry point. Because XDafny is sequential and
deterministic, the program has just one execution that starts at its
sole entry point. So, generating annotations that are true for all ex-
ecutions of an XDafny program amounts to generating annotations
that are true for the sole main execution of that program.

Algorithm 1 shows how we employ this observation to annotate
XDafny programs with random assertions and with maximally pre-
cise preconditions and postconditions of the form 𝑥 == 𝑣 , where
𝑥 stands for a variable and 𝑣 for a value (Figure 3c). We focus on
precise preconditions and postconditions because they can be gen-
erated without using an oracle verifier, and because they provide
a simple way to enable modular verification of the program’s main
execution. But the assertions that we generate need not be precise,
allowing for a wide range of propositions to be used for testing.
Our algorithm therefore generates random (general) assertions, and
precise preconditions and postconditions.

The algorithm takes two inputs: an XDafny program 𝑃 and a
Boolean flag valid. The flag indicates whether to generate a preci-
sion (true) or a soundness (false) test. For a precision test, the result-
ing annotated program should satisfy all of its annotations, and for a
soundness test, it should violate at least one annotation. Given these

559

Testing Dafny (Experience Paper) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Test
generator

method meth_0(a_0: int)
 returns (a_1: int)
 requires a_0 == -42
 ensures a_1 == 42
{
 if (a_0 <= 0) {
 a_1 := -a_0;
 } else {
 a_1 := a_0;
 }
 print a_1;
 assert 1 + a_1 >= 0;
}

method Main() {
 var a_2 :=
 meth_0(-41 - |“z”|);
 print a_2 - 32;
 assert a_2 - 32 >= 10;
}

Expectation: no spec violation

Expected &
verified

Unexpected

Bug foundExpected &
not verified

Dafny
Verifier

Dafny to X
compiler

Dafny to Y
compiler

Oracle

M
ism

at
ch

No
mismatch

Compiler differential testing

Verifier testing

Figure 1: The XDsmith workflow diagram. The test generator produces annotated Dafny programs, along with the expected
verification outcome.Wehighlight the annotations in gray, to distinguish them from the implementation code. The verifier tester
consumes an annotated program and passes it to the compiler tester if the program is both correct and accepted by the Dafny
verifier. The compiler tester performs differential testing by checking that the compiled programs print equivalent outputs.

1 // Wrapper for safely accessing sequence xs at index i.

2 function method ref<T>(xs: seq<T>, i: int, fallback: T): T

3 {

4 if 0 <= i < |xs| then xs[i] else fallback

5 }

6
7 method caller(xs: seq<int>, i: int) {

8 // This verifies:

9 print ref(xs, i, 123);

10 // But this does not:

11 // print xs[i];

12 }

Figure 2: An example safe wrapper for a potentially unsafe
operator. XDsmith generates such wrappers to ensure that
the resulting annotation-free program satisfies the implicit
correctness constraints imposed by the Dafny semantics.

inputs, the algorithm annotates 𝑃 in four steps, guaranteeing that
the resulting annotated program is correct if and only if valid is true.

Flattening. The first step (line 1) is to flatten 𝑃 ’s call graph into
a tree so that we can annotate its methods with preconditions and
postconditions of the form 𝑥 == 𝑣 . Flattening is similar to inlin-
ing: it replaces each method call with a call to a fresh copy of that
method. To see why this step is necessary, consider the method
test in Figure 3a, which is called twice with different inputs. No
single specification of the form 𝑥 == 𝑣 works for both of these calls,

so we use flattening to provide each invocation with its own precise
specification. It is easy to see that the resulting flat program 𝑃𝑇 has
a single main execution, and that this execution produces the same
printed output as the main execution of 𝑃 .

Execution. After flattening, we run 𝑃𝑇 (line 2) to collect a trace
of its main execution. This step uses the RunProgram procedure,
which compiles 𝑃𝑇 to a target language (using any Dafny compiler),
executes the target Main code, and maps the printed output back to
the source program 𝑃𝑇 . The result is a tuple with three components:
the set𝑀𝑒𝑥𝑒𝑐 of all executed methods in 𝑃𝑇 ; the set 𝑃𝑟𝑖𝑛𝑡𝑒𝑥𝑒𝑐 of all
executed print statements; and the map 𝜇 that stores the values of
the input and output variables for each executedmethod𝑚 ∈ 𝑀𝑒𝑥𝑒𝑐 .

Generating preconditions and postconditions. Given the trace of
𝑃𝑇 , we use the procedure AddPrePost to annotate each method
𝑚 in 𝑃𝑇 with preconditions and postconditions. If𝑚 is executed
in the main trace (line 5), AddPrePost annotates it with equal-
ity specifications that reflect the values of 𝑚’s input and output
variables in 𝜇. In particular, each input variable 𝑖 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 (𝑚) gener-
ates the annotation requires 𝑖 == 𝜇 (𝑖,𝑚) , and each output variable
𝑜 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 (𝑚) generates the annotation ensures 𝑜 == 𝜇 (𝑜,𝑚) . If
𝑚 is not executed (line 7), it is annotated with false preconditions
and postconditions, denoting dead code. The resulting annotations
are the most precise preconditions and postconditions for 𝑃𝑇 , and
𝑃𝑇 satisfies them by construction.

Generating assertions. In the last step, we use GenAssertions
to generate random assertions for all print statements in 𝑃𝑇 . If the
statement 𝑝 is executed, GenAssertions produces an assertion

560

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Ahmed Irfan, Sorawee Porncharoenwase, Zvonimir Rakamarić, Neha Rungta, and Emina Torlak

1 method test(x: int)

2 returns (y: int)

3 {

4 y := x + 2;

5 print y;

6 }

7
8 method Main() {

9 var y1 := test(1);

10 var y2 := test(2);

11 print y1 - y2;

12 }

(a) Original program

1 method test_1(x: int)

2 returns (y: int)

3 {

4 y := x + 2;

5 print y;

6 }

7
8
9
10
11 method test_2(x: int)

12 returns (y: int)

13 {

14 y := x + 2;

15 print y;

16 }

17
18
19
20
21 method Main() {

22 var y1 := test_1(1);

23 var y2 := test_2(2);

24 print y1 - y2;

25
26 }

(b) Transformed program

1 method test_1(x: int)

2 returns (y: int)

3 requires x == 1

4 ensures y == 3

5 {

6 y := x + 2;

7 print y;

8 assert y + x < 5;

9 }

10
11 method test_2(x: int)

12 returns (y: int)

13 requires x == 2

14 ensures y == 4

15 {

16 y := x + 2;

17 print y;

18 assert y * 2 > 7;

19 }

20
21 method Main() {

22 var y1 := test_1(1);

23 var y2 := test_2(2);

24 print y1 - y2;

25 assert -2 * (y1 - y2) > 0;

26 }

(c) Annotated program

Figure 3: Annotating an XDafny program using
GenerateSpecifications(𝑃, true). The original program
(a) is flattened so that each method is called exactly once (b).
The flattened program is annotated (c) with random asser-
tions (one for each print statement), as well as preconditions
and postconditions of the form 𝑥 == 𝑣 , where 𝑥 is an input
or output variable and 𝑣 is a concrete value.

𝐴𝑠𝑠𝑒𝑟𝑡𝑠 (𝑝) for it, and line 13 adds this assertion immediately after
𝑝 in 𝑃𝑇 . Otherwise, line 15 adds assert false after 𝑝 , denoting dead

Expression 𝑒 F 𝑧 | 𝑖 | | 𝑒 + 𝑒 | 𝑒 × 𝑒 |
𝑒 < 𝑒 | 𝑒 = 𝑒 |
𝑒 and 𝑒 | 𝑒 or 𝑒 | not 𝑒

Integer constant 𝑧F . . . ,−1, 0, 1, . . .
Integer variable 𝑖

Figure 4: Dafny grammar used for synthesizing assertions.

code.GenAssertions guarantees that the main execution of 𝑃𝑇 sat-
isfies every assertion𝐴𝑠𝑠𝑒𝑟𝑡𝑠 (𝑝) if and only if valid is true. Figure 3c
illustrates a set of valid assertions for the program in Figure 3b.

GenAssertions relies on a simple form of syntax-guided syn-
thesis [2, 19] to generate assertions for the statements in 𝑃𝑟𝑖𝑛𝑡𝑒𝑥𝑒𝑐 .
To produce a true (resp. false) assertion for a statement 𝑝 , we syn-
thesize a proposition in a particular grammar that evaluates to true
(resp. false) in the main execution of 𝑃𝑇 . Our implementation uses
the grammar in Figure 4, which allows integer and Boolean oper-
ations, but in principle, any subset of the XDafny grammar can be
used for this purpose. The leaves of the grammar include a single
variable 𝑖 , which represents the value printed by the statement 𝑝 .
We feed this grammar to the Rosette synthesis engine [39], along
with the constraint that the synthesized expression must evalu-
ate to true (resp. false) when 𝑖 evaluates to the value printed by 𝑝 .
This constraint always has some solution in our grammar. When
the synthesizer returns a solution 𝑒 , we turn it into an assertion by
replacing each occurrence of 𝑖 in 𝑒 with the expression printed by 𝑝 .

To illustrate, consider the print statement on line 24 of Figure 3b.
This statement 𝑝 prints the value of the expression y1 - y2, which
is −1 in the main execution of 𝑃𝑇 . To generate a true assertion for
𝑝 , GenAssertions invokes the synthesizer with the grammar in
Figure 4, constraining the synthesized expression to evaluate to
true when 𝑖 evaluates to -1. Suppose that the synthesizer returns the
expression −2∗𝑖 > 0.GenAssertions turns this expression into the
assertion on line 25 of Figure 3c by replacing 𝑖 with the expression
y1 - y2 printed by 𝑝 . By construction, the resulting assertion is
always true in (the main and only execution of) 𝑃𝑇 , as desired.

4 EVALUATION
4.1 Opportunistic Bug Finding
While developing XDsmith, we performed an opportunistic bug
finding case study over a three-months period that was uncontrolled
and unstructured, and similar to the one from the Csmith paper that
was performed over three years [42]. We ran XDsmith on Dafny
continuously on AWS Batch [1] with 100 concurrent threads: 50
threads were testing the Dafny verifier and 50 threads were testing
the Dafny compilers. In such a setup, XDsmith was generating
approximately 100,000 random annotated Dafny programs per day.

During the case study, we reported any Dafny crash as a bug.
If XDsmith annotated a program with a correct specification and
the verifier rejected it, we reported a potential bug. Similarly, if
XDsmith annotated a program with an incorrect specification and
the verifier accepted it, we reported a bug. We employed differential
testing on the Dafny compilers. Because compilation strips away
annotations, we streamline the differential testing of compilers by
directly compiling Dafny programs without annotations to multiple

561

Testing Dafny (Experience Paper) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Table 1: Summary of bugs found.

Verifier Compiler Other TotalSnd. Prec.

Verifier Testing 0 8 1 1 10
Compiler Testing 2 0 18 0 20
Other 1 0 0 0 1
Total 3 8 19 1 31
Confirmed 3 8 19 1 31
Fixed 0 0 7 1 8

target languages supported by Dafny. We reported any miscompila-
tion, when a Dafny compiler generates a wrong target program, as
a bug. Recall that as part of our program generation, we inject print
statements that write out program state to the standard output. We
ran each compiled target program, and compared the output with
the others; we reported any discrepancy in the results as a bug.

Whenever XDsmith uncovered a potential Dafny bug, we paused
the fuzzing process to investigate the root cause of the bug with in-
put from Dafny developers. We minimized the randomly generated
program to make root cause analysis easier. After reporting the bug,
we modified XDsmith to block it from generating programs with
features that led to the bug, so as to avoid discovering the same
bug over and over again. We then resumed the fuzzing process. Fol-
lowing the agile development process, we continuously improved
XDsmith with new features during the three months period.

We discovered 31 bugs in Dafny using XDsmith, and Table 1
provides a summary. First, we show whether we discovered a bug
during verifier testing, compiler testing, or using other means. Here,
we note that our verifier testing, where the synthesis of annota-
tions is our key contribution, accounts for almost 1/3 of all the bugs
we found. We manually investigated each reported bug, its root
cause, and the associated bug fix, whenever it was available. Based
on this manual investigation, we further categorize the bugs into
three categories based on where their root cause is located: verifier,
compilers, and other bugs. Based on the effect of verifier bugs, we
partition them into soundness (column Snd.) and precision (column
Prec.) bugs. Finally, Dafny developers confirmed all of the reported
bugs to be real and valid. Moreover, 8 of these confirmed bugs have
been fixed in the Dafny mainline. We describe example bugs in
more detail next.

4.1.1 Verifier Bugs. We found 11 bugs (3 soundness and 8 precision)
in the Dafny verifier. Among those, verifier testing found 8 bugs,
all of which are related to precision. Compiler testing found 2 bugs
related to soundness. Finally, we manually found one verifier bug
while formalizing the Dafny language in XDsmith.

Sequence prefix precision bug (found with verifier testing). Fig-
ure 5a shows a minimized precision-related Dafny bug. Evidently,
the list containing 1 is not a prefix of a list containing 2. Therefore,
[1] <= [2] should be false, where <= is the sequence prefix test-
ing operator in Dafny. This means !([1] <= [2]) should be true,
which is indeed what the compiled program outputs (if we ignore
the verification error). However, the verifier is unable to prove this
simple fact.

1 method Main() {

2 print !([1] <= [2]);

3 assert !([1] <= [2]);

4 }

(a) Sequence prefix precision bug

1 method Main() {

2 var a := new array<int>;

3 }

(b) Soundness bug related to unspecified array length

1 method Main () {

2 var a := multiset{12}[12 := 0];

3 var b := multiset{42};

4 print 12 in a, " ", a == b, "\n";

5 }

(c) Multiset semantic bug

1 method Main() {

2 print {1} >= {1, 2};

3 assert {1} >= {1, 2};

4 }

(d) Superset operator bug

Figure 5: Example Dafny bugs found by XDsmith.

Soundness bug related to unspecified array length (found with com-
piler testing). While this is a verifier soundness bug, we discovered
it during differential compiler testing. Figure 5b shows a faulty
program that creates an array of integers whose length is unspec-
ified. This is illegal in Dafny, yet the verifier does not report an
error. When the program is compiled with various Dafny compilers,
the output programs are malformed. For example, when compiled
with the C# compiler, the output program throws the error “Array
creation must have array size or array initializer”.

Map data structure soundness bug (found during Dafny formaliza-
tion). We discovered this bug while formalizing the Dafny language
in XDsmith. In Dafny, the map data structure requires the keys
to be equality-supporting. For instance, it is not possible to create
a map keyed by function values, since function values cannot be
tested for equality. However, Dafny imposes no such restriction
on the values. Yet, the operation .Value on a map returns a set
of values, where the set data structure requires its elements to be
equality-supporting. Thus, for example, operation .Value on a map
from integers to function values creates a set of function values,
thereby violating its equality-supporting constraint. The Dafny
verifier fails to report an error in this case.

4.1.2 Compiler Bugs. We found 19 bugs in the Dafny compilers.
Among those, compiler testing found 10 semantic bugs and 8 bugs
that caused compiled programs to be malformed. Note that seman-
tics bugs required differential testing to be found, while malformed
program bugs can be discovered by simply running the compiled
programs. Finally, verifier testing found one compiler bug.

562

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Ahmed Irfan, Sorawee Porncharoenwase, Zvonimir Rakamarić, Neha Rungta, and Emina Torlak

Multiset semantic bug (found with compiler testing, fixed). Fig-
ure 5c shows a program that creates multiset data structures and
performs operations on them. The multiset data structure supports
multiplicity setting. For instance, multiset{12}[12 := 3] would
be equivalent to multiset{12, 12, 12}. Evidently, the program
in Figure 5c is supposed to output false false. However, of all the
Dafny target languages, only Java target program outputs the cor-
rect result. C#, Go, and JavaScript output true false, false true,
and true true, respectively. Upon inspection, we discovered that
most runtime of target languages represent the multiset data struc-
ture with a dictionary from elements to numbers of occurrences.
However, they incorrectly assume an invariant that the number
of occurrences must be positive, which in fact does not hold. We
submitted a patch that fixed this bug by correctly maintaining the
multiset invariant in every operation.

Superset operator bug (found with verifier testing, fixed). Figure 5d
shows a simplified compiler bug, where the superset operator is
compiled to the subset operator. Therefore, the print statement
outputs true, even though it should output false. Notably, every
compiler is incorrect in the same way, so it is impossible for differen-
tial testing to discover the bug — this is a well known limitation of
differential testing. Verification testing, on the other hand, is able to
detect the discrepancy: the print statement incorrectly outputs true,
our annotation generator then asserts the expression to be true, but
the verifier correctly reports an assertion violation. We submitted
a patch that fixed this bug by compiling the operator correctly.

Incorrect subset implementation for Go (found with compiler test-
ing, fixed). The Dafny’s runtime for Go came with a subset for
multiset implementation such that for every element the number of
occurrences in one multiset must be strictly less than the number
of occurrences in the other multiset. The definition was incorrect
as it considered {1} to not be a subset of {1, 2}. We submitted a
patch that fixed this bug by implementing the correct semantics of
the subset operation in the Dafny Go runtime.

Incorrect compilation of strings (found with compiler testing, fixed).
Dafny compilers represent strings differently in their target lan-
guages. The low-level differences between internal representations
of strings across multiple target languages can lead to corner cases
in which strings are printed out differently. XDsmith detected such
an issue, and we submitted a patch that fixed it by compiling Dafny
strings to the same representation in all compilers.

4.1.3 Other bugs. We found one bug in the Dafny pretty printer.

Incorrect Dafny pretty printing (found with verifier testing, fixed).
Dafny’s function type allows users to drop parentheses when there
is exactly one argument, except when the argument is of a tuple type
to prevent ambiguous parsing. XDsmith, extended with a pretty
printer testing functionality, uncovered a bug in the Dafny pretty
printer where it would unconditionally drop parentheses, thereby
generating malformed programs. Dafny developers fixed the bug
after we reported it by introducing a check in the pretty printer for
tuple arguments.

0 500 1,000 1,500 2,000

0

50

100

150

Test size (LOC)

Ru
nt
im

e
(s
)

(a) Generation of unannotated programs.
The average runtime is 14s and test size
619 LOC.

0 1,000 2,000 3,000

0

500

1,000

Test size (LOC)

Ru
nt
im

e
(s
)

(b) Verifier testing. The average runtime
is 152s and test size 665 LOC.

0 500 1,000 1,500 2,000
0

200

400

600

Test size (LOC)

Ru
nt
im

e
(s
)

(c) Differential compiler testing. The av-
erage runtime is 83s and test size 674
LOC.

Figure 6: XDsmith runtimes.

563

Testing Dafny (Experience Paper) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

4.2 Controlled Quantitative Evaluation
To more precisely measure the performance and effectiveness of
XDsmith, we performed several controlled quantitative evaluation
experiments. In the experiments, we measure the runtime of XD-
smith and the code coverage achieved on Dafny. We set the Xsmith
AST depth, which controls the size of the generated tests, to its
default value. We ran all the experiments on a Macbook Pro (M1,
13-inch) with 16 GB of memory in a controlled environment.

Figure 6 presents the runtimes of XDsmith plotted against the
size of the generated test cases. In each experiment, we generated
200 test cases with three different flows through XDsmith: gener-
ation of unannotated programs, verifier testing, and differential
compiler testing. All the reported runtimes are end-to-end, from
starting XDsmith to retrieving the output after it terminates.

Figure 6a shows the barebone runtimes of XDsmith for generat-
ing test programs without annotations. XDsmith generates majority
of tests quickly, with the average runtime of 14 seconds per test,
and with the average test size of 619 lines.

Figure 6b shows the runtimes of the verifier testing flow, which
include generating random programs with annotations and verify-
ing them using Dafny. As expected, the runtimes increased when
compared to the barebones test generation since most of them
are dominated by the invocations of the annotation synthesis step.
There are a number of outliers that have high runtimes (around
1000 seconds) for test programs of modest size (under 1000 LOC).
These outliers contain many print statements, leading to large an-
notation synthesis workloads. Other outliers some have complex
call graphs, leading to a large increase in size after flattening.

Figure 6c shows the runtimes of the differential compiler testing
flow, which includes random generation of programs without an-
notations and the differential compiler testing step. We perform the
compilation and concrete execution steps with each Dafny compiler
one at a time. Moreover, while the random programs we use for
compiler testing do not contain annotations, the Dafny verifier is
still run to check the implicit specifications (e.g., no overflows, no
array out of bounds accesses) before the programs can be compiled.
When compared to the previous two plots, the runtimes fall in-
between—they are higher than the barebones test generation since
we invoke the compilers, but they are also lower than the verifier
testing since we omit the more expensive annotation synthesis step.

Figure 7 presents the code coverage (i.e. the coverage of the Dafny
verifier code in C#) that XDsmith achieves on Dafny over 100 runs,
and compares the resulting coverage against the coverage achieved
by verifying a baseline program. The baseline program is a solution
to a challenge from the verification competition VSComp-2010 [27],
taken from the Dafny documentation website [31]. We can see that
the coverage of the first test program already exceeds the coverage
of the baseline program, indicating that our tests cover a wide range
of commonly used Dafny features. As is common with fuzzing, we
quickly reach saturation, wheremajority of the test cases that follow
contribute little to improving coverage. However, we can still oc-
casionally notice sizable jumps in coverage (around test 20 and test
80). These are the tests that exercise new parts of code, and that are
more likely to lead to new bugs being found. Hence, as supported by
our opportunistic bug finding case study, it is worthwhile to run XD-
smith over multiple weeks, or even months, to improve our chances

0 20 40 60 80 100
22

24

26

28

30

Number of tests

Co
de

co
ve
ra
ge

(%
)

Branch coverage
Line coverage

Baseline branch coverage
Baseline line coverage

Figure 7: Code coverage from XDsmith verifier testing. The
baseline branch coverage is at 23%, and the baseline line
coverage is at 27%.

of uncovering such test cases. In fact, continuously performing
fuzzing for long periods of time is a well-established practice [42].

5 LESSONS LEARNED
In this section, we discuss our experience and lessons learned while
developing and applying XDsmith.

Software infrastructure. We chose to build XDsmith in the Racket
language [15] for two reasons. First, Racket is designed for build-
ing new programming languages and tools, and as such, it offers
powerful facilities for syntactic abstraction and for writing code
that manipulates ASTs. Second, using Racket let us easily adopt
two key pieces of infrastructure that we needed for XDsmith: a
fuzzing framework, Xsmith [21], and a program synthesis frame-
work, Rosette [39].

Thanks to Xsmith, we implemented a working prototype of the
program generator in just a few weeks. The initial fuzzer gener-
ated random programs in a small but useful subset of the XDafny
grammar. This rapid start enabled us to begin testing Dafny imme-
diately, find gaps in our grammar coverage, and determine what
additional features to support next. Xsmith made it easy to extend
our grammar incrementally, and to go from a small core grammar
to the full XDafny subset (Section 3.1) in three person-months.

On the flip side, we also had to work around two core limitations
of Xsmith. The first limitation was in Xsmith’s type system, which
currently provides no support for expressing classes, traits, and
inheritance. Xsmith authors acknowledged that improving Xsmith
to support classes is future work [38]. We side-stepped this prob-
lem by excluding the object-oriented features of Dafny from the
XDafny grammar. The second limitation was in Xsmith’s canned
components, which are grammar abstractions for expressing com-
mon language constructs, such as let expressions and conditionals.
Xsmith encourages developers to build new fuzzing grammars by
combining canned components. In our case, the default definitions
of these components were insufficient to express the XDafny gram-
mar, and there was no easy way to customize them. We ended up
copying their implementation and modifying it to suit our needs.

564

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Ahmed Irfan, Sorawee Porncharoenwase, Zvonimir Rakamarić, Neha Rungta, and Emina Torlak

We use Rosette to generate assertions for annotating the ran-
dom Dafny programs generated by the fuzzer. Like Xsmith, Rosette
helped us to quickly implement the assertion generator. Also, like
Xsmith, it presented limitations that we had to work around. For
example, Rosette’s synthesizer is deterministic: given a synthesis
problem, it always produces the same expression (if one exists) as
the answer. However, XDsmith needs to synthesize a variety of
random assertions. We solved this problem by randomly concretiz-
ing [25] the grammar passed to Rosette’s synthesizer.

Computing infrastructure. We had access to AWS resources for
our experiments, allowing us to launchmultiple threads of XDsmith
with ease. Using this infrastructure, we ran our testing framework
continuously on 100 machines for 3 months. As a consequence, we
were able to obtain results much faster than we could have with
the traditional desktop or local cluster setups.

Domain experts. Like prior testing efforts [11, 42], we benefited
from having good rapport with the developers of the tools we
were using and testing. In our case, we were able to connect with
the Xsmith developers and quickly understand Xsmith limitations.
Similarly, we regularly connected with the Dafny experts and de-
velopers. They helped us understand the semantics of Dafny, and
they quickly acknowledged and triaged our bug reports. These
interactions were essential in helping us refine our approach and
converge on the design presented in this paper.

Fuzzing finds new bugs. Dafny is amature software infrastructure
that follows good software development practices, including con-
tinuous integration, regression and unit testing, and code reviews.
For example, Dafny repository [12] contains about 1233 integration
tests and 258 unit tests as of May, 2022. These tests are regularly
run on every code change as a part of the continuous integration
process. Using XDsmith we were still able to uncover a number of
new bugs in Dafny, which shows that fuzzing is complimentary to
the existing Dafny tests.

Importance of annotated programs. As Table 1 shows, using ver-
ifier testing with annotated programs we found almost 1/3 of all
the bugs we reported. This supports our intuition we had early
on that performing just the more traditional (differential) compiler
fuzzing is not sufficient in the domain of testing of verification
ecosystems such as Dafny. While our novel approach of automat-
ically generating annotated programs using automatic synthesis
is already effective in finding bugs, more research should be done
in this space to further improve the effectiveness of the annotated
program generation; we leave this for future work.

6 RELATEDWORK
There are numerous approaches and tools for testing of compilers,
and our work falls into this broader area of compiler testing [10, 29].
More specifically, Cadar and Donaldson [8] noted the importance of
improving our confidence in program analyzers using testing sev-
eral years ago. We describe recent efforts to address this problem by
developing approaches for testing of verifiers and static analyzers.

Cuoq et al. [11] leverage an interpreter mode of the static an-
alyzer Frama-C to perform differential testing between the ana-
lyzer’s interpreter and a concrete execution on randomly generated

C programs. Additionally, they modify the static analyzer to output
the internal inferred facts, and then run the test program to see
if the inferred facts agree with the concrete execution. They use
an existing tool called Csmith to generate random C programs,
while we developed a new generator of random Dafny programs
by leveraging Xsmith. Moreover, unlike them, we avoided having
to modify Dafny by automatically synthesizing interesting asser-
tions during the random program generation process. Finally, their
focus is on testing of the Frama-C interpreter and static analysis
modules, while we are focused on testing of a Floyd-Hoare-style
verifier. Recently, Casso et al. [9] proposed a testing method for
static analyzers that is similar to the one proposed by Cuoq et al.

Klinger et al. [28] perform differential testing of static analyzers
for C programs to uncover soundness and precision issues. While
we generate both random Dafny programs and assertions from
scratch, their technique takes a set of seed C programs as input, and
it randomly injects assertions into them. Moreover, they establish
the likely ground truth for each injected assertion by performing
differential testing across several analyzers. Since Dafny has only
one available verifier, we leverage concrete executions to synthesize
assertions with known truth values ahead of time.

Kapus and Cadar [26] focus on automatic testing of symbolic ex-
ecution engines on C programs that they randomly generate using
Csmith. The key novelty of this work is the generation of program
versions and the accompanying oracles that are particularly suit-
able for symbolic execution engines (e.g., based on path coverage).
These are not easily transferable to our Hoare-style verification
setting since, for example, path coverage is not readily available.
Hence, we proposed a more suitable oracle for our setting based on
automatic synthesis of assertion with known truth values.

Taneja et al. [37] use an SMT solver to infer sound and precise
dataflow facts about program fragments. Then, they use the gen-
erated facts to test the LLVM’s static analyzer for soundness and
precision bugs. Like us, they generate facts that are sound and pre-
cise by construction, thus avoiding the oracle problem. Unlike us,
they focus on inferring facts suitable for testing of dataflow analy-
ses, while we synthesize assertions targeting Hoare-style verifiers.

Recently, Groce et al. [18] devised a method for testing of static
analyzers that combines differential andmutation testing. Their test-
ing method is specifically geared towards abstract-interpretation-
based analysis engines since it focuses on effectively dealing with
potentially high rates of false alarms, which is a common problem
in such tools. They also leverage differential testing across several
static analyzers. Similarly, Ami et al. [3] employ mutation testing
to uncover soundness issues in static analyzers for Android appli-
cations. While we show that our approach based on generating
random Dafny programs from scratch is successful in finding bugs
in the Dafny verifier and compilers, as future work, it would be
interesting to explore mutation testing for Dafny as well.

Apart from static analyzers and verifiers, fuzzing techniques
have also been successfully applied to find bugs in other parts of
a typical software verification toolchain, namely SMT solvers [6,
7, 33, 35, 36, 40, 41]. These techniques are complementary to our
approach since they work on the backend SMT solvers instead of
on the frontend verifier like us. Finally, there are studies [17, 42]
complementary to ours that focus on assessing the correctness of

565

Testing Dafny (Experience Paper) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

formally verified artifacts instead of the actual verifiers. In particu-
lar, as the byproduct of testing of software systems developed using
Dafny, Fonseca et al. [17] uncovered several soundness bugs in the
Dafny verifier as well.

7 CONCLUSIONS AND FUTUREWORK
Program verifiers such as Dafny are powerful tools that allow us
to prove the correctness of systems. To build confidence in these
proofs, it is important to test all parts of the Dafny ecosystem,
from the verifier to the compilers. The core challenge we solve in
this work is how to automatically generate annotated programs
with a known verification outcome. We present our experience in
building XDsmith, an automated testing framework for the Dafny
verifier and compilers that uses a combination of random program
generation and example-based generation of assertions. The source
code of XDsmith is publicly available at https://github.com/dafny-
lang/xdsmith.

Our guiding principle was to use simple and obvious techniques
that work in detecting bugs. We leverage the Xsmith framework
to randomly generate well-formed and well-typed programs in
a subset of Dafny. We configure the program generation to add
print statements that write program state to standard out for dif-
ferential testing and annotation generation. We generate Dafny
programs that are free of loops and heap mutation; this ensures ter-
mination and lets us avoid having to generate loop invariants and
frame conditions. We then concretely execute the Dafny program to
record the values of the input and output variables; using these, we
annotate the Dafny program with precise preconditions and post-
conditions. Based on the precise preconditions and postconditions,
we transform the print statements to assertions in the annotated
Dafny program, where the assertions are weaker than the concrete
value observed on the standard out. Over a three-month period,
where we ran 100 concurrent threads generating annotated Dafny
programs and testing the verifier and the underlying compilers, we
detected 31 bugs that were all confirmed by the Dafny developers.
Eight of those have already been fixed and pushed to the Dafny
mainline. This demonstrates that our simple approach is effective
in testing the Dafny ecosystem.

As part of future work, we will integrate it in the Dafny ecosys-
tem. We are currently working with the Dafny developers on this
effort. The choices we made for generating specifications and asser-
tions were based on Occam’s razor and were the simplest approach
given the tools and techniques available. In future work, we will
compare different assertion generation techniques, and support
more of the Dafny constructs when generating the random Dafny
programs.

REFERENCES
[1] [n. d.]. AWS Batch: Fully managed processing at any scale. https://aws.amazon.

com/batch/. Accessed: 2022-01-07.
[2] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund

Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. IEEE. 1–8 pages.
https://ieeexplore.ieee.org/document/6679385/

[3] Amit Seal Ami, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and Denys Poshy-
vanyk. 2021. Systematic Mutation-Based Evaluation of the Soundness of Security-
Focused Android Static Analysis Techniques. ACM Trans. Priv. Secur. 24, 3 (2021),
15:1–15:37. https://doi.org/10.1145/3439802

[4] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. 2009.
Satisfiability Modulo Theories. In Handbook of Satisfiability, Armin Biere, Marijn

Heule, Hans van Maaren, and Toby Walsh (Eds.). Frontiers in Artificial Intelli-
gence and Applications, Vol. 185. IOS Press, 825–885. https://doi.org/10.3233/978-
1-58603-929-5-825

[5] Clark W. Barrett and Cesare Tinelli. 2018. Satisfiability Modulo Theories. In
Handbook of Model Checking, Edmund M. Clarke, Thomas A. Henzinger, Helmut
Veith, and Roderick Bloem (Eds.). Springer, 305–343. https://doi.org/10.1007/978-
3-319-10575-8_11

[6] Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz Kabir, and
Vijay Ganesh. 2018. StringFuzz: A Fuzzer for String Solvers. In Computer Aided
Verification - 30th International Conference, CAV 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II
(Lecture Notes in Computer Science, Vol. 10982), Hana Chockler and Georg Weis-
senbacher (Eds.). Springer, 45–51. https://doi.org/10.1007/978-3-319-96142-2_6

[7] Robert Brummayer and Armin Biere. 2009. Fuzzing and delta-debugging SMT
solvers. In Proceedings of the 7th International Workshop on Satisfiability Modulo
Theories. 1–5.

[8] Cristian Cadar and Alastair F. Donaldson. 2016. Analysing the program analyser.
In Proceedings of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016 - Companion Volume, Laura K. Dillon,
Willem Visser, and Laurie A. Williams (Eds.). ACM, 765–768. https://doi.org/10.
1145/2889160.2889206

[9] Ignacio Casso, José F. Morales, Pedro López-García, and Manuel V. Hermenegildo.
2020. Testing Your (Static Analysis) Truths. In Logic-Based Program Synthesis
and Transformation - 30th International Symposium, LOPSTR 2020, Bologna, Italy,
September 7-9, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12561),
Maribel Fernández (Ed.). Springer, 271–292. https://doi.org/10.1007/978-3-030-
68446-4_14

[10] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. ACM Comput. Surv. 53,
1 (2020), 4:1–4:36. https://doi.org/10.1145/3363562

[11] Pascal Cuoq, BenjaminMonate, Anne Pacalet, Virgile Prevosto, John Regehr, Boris
Yakobowski, and Xuejun Yang. 2012. Testing Static Analyzers with Randomly
Generated Programs. In NASA Formal Methods - 4th International Symposium,
NFM 2012, Norfolk, VA, USA, April 3-5, 2012. Proceedings (Lecture Notes in Computer
Science, Vol. 7226), Alwyn Goodloe and Suzette Person (Eds.). Springer, 120–125.
https://doi.org/10.1007/978-3-642-28891-3_12

[12] dafny [n. d.]. Dafny. https://github.com/dafny-lang/dafny
[13] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi,

Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. 2018. A Programmable
Programming Language. Commun. ACM 61, 3 (March 2018), 62–71.

[14] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017.
Komodo: Using verification to disentangle secure-enclave hardware from soft-
ware. In Proceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017. ACM, 287–305. https://doi.org/10.1145/
3132747.3132782

[15] Matthew Flatt and PLT. 2010. Reference: Racket. Technical Report PLT-TR-2010-1.
PLT Design Inc.

[16] Robert W. Floyd. 1993. Assigning Meanings to Programs. Springer Netherlands,
Dordrecht, 65–81. https://doi.org/10.1007/978-94-011-1793-7_4

[17] Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. 2017. An
Empirical Study on the Correctness of Formally Verified Distributed Systems.
In Proceedings of the Twelfth European Conference on Computer Systems, EuroSys
2017, Belgrade, Serbia, April 23-26, 2017, Gustavo Alonso, Ricardo Bianchini, and
Marko Vukolic (Eds.). ACM, 328–343. https://doi.org/10.1145/3064176.3064183

[18] Alex Groce, Iftekhar Ahmed, Josselin Feist, Gustavo Grieco, Jiri Gesi, Mehran
Meidani, and Qihong Chen. 2021. Evaluating and Improving Static Analysis
Tools Via Differential Mutation Analysis. In 21st IEEE International Conference
on Software Quality, Reliability and Security, QRS 2021, Hainan, China, December
6-10, 2021. IEEE, 207–218. https://doi.org/10.1109/QRS54544.2021.00032

[19] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthe-
sis. Found. Trends Program. Lang. 4, 1-2 (2017), 1–119. https://doi.org/10.1561/
2500000010

[20] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon Howell, Rob Johnson,
and Bryan Parno. 2020. Storage Systems are Distributed Systems (So Verify
Them That Way!). In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, 99–115. https://www.usenix.
org/conference/osdi20/presentation/hance

[21] William Gallard Hatch, Pierce Darragh, Guy Watson, and Eric Eide. 2020. Xsmith
software repository. https://gitlab.flux.utah.edu/xsmith/xsmith

[22] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. 2015. IronFleet: proving
practical distributed systems correct. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015,
Ethan L. Miller and Steven Hand (Eds.). ACM, 1–17. https://doi.org/10.1145/
2815400.2815428

[23] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (1969), 576–580. https://doi.org/10.1145/363235.363259

566

https://github.com/dafny-lang/xdsmith
https://github.com/dafny-lang/xdsmith
https://aws.amazon.com/batch/
https://aws.amazon.com/batch/
https://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.1145/3439802
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1145/2889160.2889206
https://doi.org/10.1145/2889160.2889206
https://doi.org/10.1007/978-3-030-68446-4_14
https://doi.org/10.1007/978-3-030-68446-4_14
https://doi.org/10.1145/3363562
https://doi.org/10.1007/978-3-642-28891-3_12
https://github.com/dafny-lang/dafny
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1109/QRS54544.2021.00032
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://www.usenix.org/conference/osdi20/presentation/hance
https://www.usenix.org/conference/osdi20/presentation/hance
https://gitlab.flux.utah.edu/xsmith/xsmith
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/363235.363259

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Ahmed Irfan, Sorawee Porncharoenwase, Zvonimir Rakamarić, Neha Rungta, and Emina Torlak

[24] Chiao Hsieh and Sayan Mitra. 2019. Dione: A Protocol Verification System Built
with Dafny for I/O Automata. In Integrated Formal Methods - 15th International
Conference, IFM 2019, Bergen, Norway, December 2-6, 2019, Proceedings (Lecture
Notes in Computer Science, Vol. 11918), Wolfgang Ahrendt and Silvia Lizeth Tapia
Tarifa (Eds.). Springer, 227–245. https://doi.org/10.1007/978-3-030-34968-4_13

[25] Jinseong Jeon, Xiaokang Qiu, Armando Solar-Lezama, and Jeffrey S. Foster. 2015.
Adaptive Concretization for Parallel Program Synthesis. In Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA,
July 18-24, 2015, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 9207),
Daniel Kroening and Corina S. Pasareanu (Eds.). Springer, 377–394. https:
//doi.org/10.1007/978-3-319-21668-3_22

[26] Timotej Kapus and Cristian Cadar. 2017. Automatic testing of symbolic execution
engines via program generation and differential testing. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, ASE 2017,
Urbana, IL, USA, October 30 - November 03, 2017, Grigore Rosu, Massimiliano Di
Penta, and Tien N. Nguyen (Eds.). IEEE Computer Society, 590–600. https:
//doi.org/10.1109/ASE.2017.8115669

[27] Vladimir Klebanov, Peter Müller, Natarajan Shankar, Gary T. Leavens, Valentin
Wüstholz, EyadAlkassar, RobArthan, Derek Bronish, RodChapman, Ernie Cohen,
Mark A. Hillebrand, Bart Jacobs, K. Rustan M. Leino, Rosemary Monahan, Frank
Piessens, Nadia Polikarpova, Tom Ridge, Jan Smans, Stephan Tobies, Thomas
Tuerk, Mattias Ulbrich, and Benjamin Weiß. 2011. The 1st Verified Software
Competition: Experience Report. In FM 2011: Formal Methods - 17th International
Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings
(Lecture Notes in Computer Science, Vol. 6664), Michael J. Butler and Wolfram
Schulte (Eds.). Springer, 154–168. https://doi.org/10.1007/978-3-642-21437-0_14

[28] Christian Klinger, Maria Christakis, and Valentin Wüstholz. 2019. Differentially
testing soundness and precision of program analyzers. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2019, Beijing, China, July 15-19, 2019, Dongmei Zhang and Anders Møller (Eds.).
ACM, 239–250. https://doi.org/10.1145/3293882.3330553

[29] Alexander S. Kossatchev and Mikhail Posypkin. 2005. Survey of compiler testing
methods. Program. Comput. Softw. 31, 1 (2005), 10–19. https://doi.org/10.1007/
s11086-005-0008-6

[30] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional
Correctness. In Logic for Programming, Artificial Intelligence, and Reasoning - 16th
International Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 6355), Edmund M. Clarke
and Andrei Voronkov (Eds.). Springer, 348–370. https://doi.org/10.1007/978-3-
642-17511-4_20

[31] K. Rustan M. Leino, Richard L. Ford, and David R. Cok. [n. d.]. Dafny Reference
Manual. https://dafny-lang.github.io/dafny/DafnyRef/DafnyRef

[32] Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom. Reason.
43, 4 (2009), 363–446. https://doi.org/10.1007/s10817-009-9155-4

[33] Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and Fuyuan
Zhang. 2020. Detecting critical bugs in SMT solvers using blackbox mutational
fuzzing. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, Virtual Event,
USA, November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas Zimmer-
mann (Eds.). ACM, 701–712. https://doi.org/10.1145/3368089.3409763

[34] William M. McKeeman. 1998. Differential Testing for Software. Digit. Tech.
J. 10, 1 (1998), 100–107. http://www.hpl.hp.com/hpjournal/dtj/vol10num1/
vol10num1art9.pdf

[35] Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2021. Gener-
ative type-aware mutation for testing SMT solvers. Proc. ACM Program. Lang. 5,
OOPSLA (2021), 1–19. https://doi.org/10.1145/3485529

[36] Joseph Scott, Federico Mora, and Vijay Ganesh. 2020. BanditFuzz: A
Reinforcement-Learning Based Performance Fuzzer for SMT Solvers. In Software
Verification - 12th International Conference, VSTTE 2020, and 13th International
Workshop, NSV 2020, Los Angeles, CA, USA, July 20-21, 2020, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 12549), Maria Christakis, Nadia
Polikarpova, Parasara Sridhar Duggirala, and Peter Schrammel (Eds.). Springer,
68–86. https://doi.org/10.1007/978-3-030-63618-0_5

[37] Jubi Taneja, Zhengyang Liu, and John Regehr. 2020. Testing static analyses for
precision and soundness. In CGO ’20: 18th ACM/IEEE International Symposium
on Code Generation and Optimization, San Diego, CA, USA, February, 2020. ACM,
81–93. https://doi.org/10.1145/3368826.3377927

[38] The Xsmith team. [n. d.]. Personal communication.
[39] Emina Torlak and Rastislav Bodík. 2014. A lightweight symbolic virtual machine

for solver-aided host languages. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 530–541.
https://doi.org/10.1145/2594291.2594340

[40] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. On the unusual
effectiveness of type-aware operator mutations for testing SMT solvers. Proc.
ACM Program. Lang. 4, OOPSLA (2020), 193:1–193:25. https://doi.org/10.1145/
3428261

[41] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. Validating SMT
solvers via semantic fusion. In Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2020,
London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.).
ACM, 718–730. https://doi.org/10.1145/3385412.3385985

[42] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 283–294.
https://doi.org/10.1145/1993498.1993532

567

https://doi.org/10.1007/978-3-030-34968-4_13
https://doi.org/10.1007/978-3-319-21668-3_22
https://doi.org/10.1007/978-3-319-21668-3_22
https://doi.org/10.1109/ASE.2017.8115669
https://doi.org/10.1109/ASE.2017.8115669
https://doi.org/10.1007/978-3-642-21437-0_14
https://doi.org/10.1145/3293882.3330553
https://doi.org/10.1007/s11086-005-0008-6
https://doi.org/10.1007/s11086-005-0008-6
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://dafny-lang.github.io/dafny/DafnyRef/DafnyRef
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/3368089.3409763
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://doi.org/10.1145/3485529
https://doi.org/10.1007/978-3-030-63618-0_5
https://doi.org/10.1145/3368826.3377927
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/3428261
https://doi.org/10.1145/3428261
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Overview of XDsmith
	2.1 Brief Introduction to Dafny
	2.2 Testing Dafny Verifier and Compilers
	2.3 XDsmith Components and Workflow

	3 Generating random test programs
	3.1 Generating Programs Without Annotations
	3.2 Generating Program Annotations

	4 Evaluation
	4.1 Opportunistic Bug Finding
	4.2 Controlled Quantitative Evaluation

	5 Lessons Learned
	6 Related work
	7 Conclusions and Future Work
	References

