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Abstract
We present a case for adopting formal verification as a methodol-
ogy for evaluating hidden communication systems (HCS), with the
goal of supplementing the current ad hoc and informal analysis
strategies used in state-of-the-art HCS with a rigorous pathway to
the analysis of these systems. Our position is that the core secu-
rity properties of these systems, like resistance to traffic analysis
and detectability, are fundamentally distinguishability problems
aligned with the same distinguishability concepts found in cryptog-
raphy. Thus, we propose the lifting of cryptographic results to the
HCS domain and the leverage of the existing formal verification
infrastructure available for cryptography to derive concrete secu-
rity and performance bounds for HCSs. Concretely, we propose the
usage of simulation-based cryptography as a rigorous framework
to model interactions between users, censors, and network proto-
cols, allowing precise definitions of censorship relevant goals such
as unobservability, unblockability, covertness, and performance
guarantees. We showcase the utility of this formal approach by
presenting VeriWeird, an envisioned tool that bridges the formal
gap existing in state-of-the-art HCS and demonstrate our approach
through a (preliminary) analysis of meek. Our case study highlights
the potential of machine-checked verification to provide strong,
systematic assurances of resilience and also identify vulnerabilities
in adversarial environments.

Keywords
formal verification, simulation-based cryptography, hidden com-
munication systems, censorship circumvention

1 Introduction
HCSs exploit underspecified protocols by taking advantage of ambi-
guities or undefined (“weird”) behavior in specifications to bypass
censorship [10]. These systems leverage the fact that some network
protocols may not fully define how certain data or signals should
be handled, allowing them to manipulate traffic in ways that evade
detection by censors. Example strategies include domain fronting,
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packet fragmentation and header manipulations [5], traffic substi-
tution [3, 13, 14], and steganographic embedding in unexpected
cover protocols. Notably, the process of developing and fielding
censorship circumvention tools has been largely ad-hoc and devoid
of scientific rigor [8], leading to a cat-and-mouse game.

For example, several recently proposed covert channels substi-
tute or replace traffic generated by a cover application and send
it through the application’s encrypted network connection. Their
security arguments involve pre-trained network-trace classifiers
not distinguishing covert from those of the cover application. Unfor-
tunately, many of these approaches fail against application-aware
adversaries who observe or induce discrepancies such as violations
of application-specific invariants.

In this position paper, we contend that the core security goals of
circumvention systems — undetectability, mimicry, resistance to
fingerprinting — as well as their performance properties — latency,
throughput and goodput — are fundamentally distinguishability
properties, analogous to those long studied in cryptographic con-
texts, and propose VeriWeird (Figure 1), as a framework for inte-
grating foundational tools and techniques for rigorous modeling
and analysis of HCSs used for censorship circumvention.

VeriWeird’s key innovation is the concept of simulatable indis-
tinguishability proofs (SIPs), a novel approach to the formalization
of HCSs that is based on the encoding of HCS properties in the
simulation-based cryptographic proof paradigm [11]. The goal of
simulation-based cryptography is to establish probabilistic indistin-
guishability between an ideal world, where the primitive is secure
by definition, and the real world, where concrete protocols are ex-
ecuted. In terms of HCS, the real world represents the execution
of the HCS channel (like Balboa) and the ideal world represents
the application channel (like WebRTC) on top of which the HCS
channel of the real world is defined. The objective is to show the
existence of a simulator that the ideal world can use to generate a
plausible execution trace of the application channel that matches
the real-world traces from the HCS channel. If the traces produced
by the real world are indistinguishable from those produced by
the ideal world, the protocol is secure since security is built into
the definition of the ideal world. Because the blocking of HCSs is
based on detecting discrepancies between traces generated by its
execution and the ideal-world application, our simulation-based
approach provides an apposite proof paradigm.
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Figure 1: VeriWeird workflow. Blue arrows and boxes repre-
sent the workflow of security and privacy proofs.

The conceptual usage of simulation-based cryptography tomodel
HCS security suggests that the same computer-aided cryptogra-
phy [2] proof infrastructure that exists for cryptographic proofs can
also be applied to the analysis of HCS, providing rigorous method-
ologies tomathematically prove and establish concrete results about
HCS. However, we have yet to see meaningful adoption of such
techniques in the censorship circumvention literature [? ].

Notably, applying formal verification to censorship circumven-
tion introduces a myriad of new and interesting research challenges.
In contrast to cryptographic proofs, which rely onwell-defined ideal
functionalities, circumvention proofs require accurate and context-
specific models of network traffic—both benign traffic of cover ap-
plications and generic background traffic. For example, applications
that useWebRTC exhibit highly divergent traffic patterns despite
using the same underlying protocol, and video streams may toler-
ate significant frame loss without perceptual degradation—factors
that must be captured in the modeling stage to support meaning-
ful proofs. We argue that indistinguishability claims in this space
must be proved, not just empirically demonstrated through classifier
performance on custom traces of network traffic.

2 Modeling HCS via simulation-based cryptography
Adversary modeling is a key gap in the field of HCSs: Security
arguments for existing circumvention systems are based on ad-
hoc adversary models, often incomplete or not representative of
real-world adversaries, resulting in allegedly secure designs that
fail even against relatively straightforward attacks. Adversarial
models for detecting circumvention represent different capabilities
and approaches that detectors might use to monitor and control
network traffic. These adversaries range from simple, stateless tech-
niques to more complex, cross-layer and cross-flow techniques that
allow for deeper inspection and comprehensive examination of
circumvention mechanisms.

The workflow of an HCS simulation-based proof (Figure 2) is as
follows. The adversary is responsible for initializing the protocol,
generating initial data and providing inputs for each participating
dataset. It also chooses if it wants to corrupt any party, gaining
control over its execution. The adversary will then interact with
either the real world or the ideal world. The real world is responsible
for executing the HCS channel, producing a set of HCS channel

Figure 2: VeriWeird’s simulation-based cryptography ap-
proach

network traces 𝑇𝐻𝐶𝑆 together with the output 𝑂𝐻𝐶𝑆 of each party
participating in the HCS communication. Second, the ideal world
will execute the application channel as if no censorship mechanism
is in place (messages can be sent without covertness) which will
produce an output𝑂𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 for each party. The ideal world will
then invoke a simulator that will attempt to reproduce the online
behavior of the HCS channel and produce protocol traces𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 .
The simulation proof is completed by trying to distinguish between
𝑂𝐻𝐶𝑆 and 𝑂𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 and between 𝑇𝐻𝐶𝑆 and 𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 :

• if 𝑂𝐻𝐶𝑆 ∼ 𝑂𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 , then the HCS channel correctly
transmitted the message it was intend to transmit; and

• if 𝑇𝐻𝐶𝑆 ∼ 𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 , then the traces produced by the HCS
channel do not expose the HCS communication and the
HCS message was securely transmitted because the HCS
communication was not detected.

Because we are encoding HCS properties as cryptographic re-
sults, the aforementioned equivalences will be established via prob-
abilistic reasoning. One advantage of adopting the simulation-based
cryptography proof paradigm is that it is able to model all properties
that can be defined by comparing traces, which make it an attractive
methodology to assess circumvention protocols since blocking of
covert channels is based on detecting discrepancies between the
application channel traces and the HCS channel traces. A second
advantage of formalizing HCS properties via simulation is that the
paradigm is parametric in the adversaries and can, therefore, toler-
ate any adversary (passive or active). In fact, in simulation-based
cryptography, the real and ideal world are fixed and it is the adver-
sary that changes; i.e., it is the power given to the adversary that
defines the security level of the protocol.

3 VeriWeird Approach to Modeling HCSs
VeriWeird rigorous approach to the analysis of HCSs incorporates
a domain-specific language (DSL), dubbed WeirdDSL– an exten-
sion of the existing P1 language [6] for modeling of network and
distributed systems (i.e., event-driven systems), and a formal verifi-
cation backend that integrates the P [12] analysis engine and the
EasyCrypt [4] cryptographic proof assistant.

The envisioned workflow of VeriWeird is depicted in Figure 1.
VeriWeird integrates HCS concepts embedded in the P language
1P language is extensively used by AWS, Microsoft and Academia.
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and the Kinetic language with a robust and scalable proof pipeline
based on EasyCrypt. First, aWeirdDSL specification of an HCS is
compiled into what we denote by abstract secure HCS framework,
i.e., an abstract definition of what an HCS is and of its security
definitions written in a simulation-based cryptographic fashion.
This framework is formalized in EasyCrypt and is agnostic of the
HCS being analyzed, meaning that the framework is able to accom-
modate multiple instances of HCSs. The instantiated EasyCrypt
framework produces a set of pre-conditions and invariants that
need to be met in order for an HCS to achieve the desired level of
security and privacy according to some well-defined adversary. In
addition toWeirdDSL definition of an HCS, VeriWeird will produce
the security and privacy proofs described at the bottom of Figure 1.
Essentially, we prove that, if pre-conditions and invariants hold,
then the HCS achieves the desired level of security and privacy,
according to some adversary.

NetDiffusion [9] is a powerful probabilistic modeling tool de-
signed to generate realistic synthetic network traffic based on real-
world datasets. In scenarios where we want to evaluate the de-
tectability of circumvention tools like Meek, it becomes crucial
to model background traffic accurately, since an adversary’s false
positive rate depends heavily on the characteristics of benign traf-
fic. By training a NetDiffusion model on packet-level traces—such
as those collected from campus networks, backbone providers, or
public datasets—we can learn the statistical distributions of traffic
features like packet sizes, interarrival times, domain names etc.
Once trained, the model can sample large volumes of synthetic traf-
fic that mirrors the complexity and diversity of real traffic. These
samples can then be analyzed to extract empirical distributions—for
example, estimating the mean and variance of packet sizes—which
are crucial for simulating the background traffic in a formal model.

4 Modeling meek Detection

meek [7] is a particular example of a general class of HCSs that
arise from underspecified protocols and protocol ambiguities.meek
uses domain fronting to hide the target bridge relay behind popular
cloud service domains, like google.com or amazon.com, by using
different domains in the unencrypted and encrypted parts of an
HTTPS request. Specifically, the server name indicator (SNI) seen
by the censors is a permitted site, while the true destination is
hidden inside the encrypted request. This allows for Tor traffic to
look like normal HTTPS traffic destined to the permitted site and
has the side effect of blocking meek be very expensive for censors.

In this model, we consider an adversary that attempts to detect
and block meek traffic using two signals. The SNI value if it matches
the known meek front domain; and the traffic profile: specifically,
the packet size distribution associated with the traffic. We assume
that: (1) meek traffic follows a normal distribution with mean
packet size of 512 bytes and variance 30. (2) Background traffic
packet size follows a Poisson distribution with 𝜆 = 1024. (3) Only
0.01% of background traffic uses the front domain (to simulate
overlap with benign uses).

The adversary’s detection rule is conjunctive: classify traffic as
meek only if both the SNI and traffic pattern match known meek
signatures.

spec Confidentiality observes eTLSPacketRequest ,
eHTTPSPacketRequest {

start state Init { /* do the initialization */ }
state Distinguish {

/* check assertion about payloads associated with observed
events */ }

}
spec Anonymity observes eTLSPacketRequest ,eHTTPSPacketRequest {

start state Init { /* do the initialization */ }
state Detect {

/* check assertion about payloads associated with observed
events */ }

}

Figure 3:WeirdDSL definition of channel confidentiality and
anonymity properties against the SNImonitoring adversary.

machine CensoredClient {
..
start state Init { /* do the initialization */ }
state StartCommunication {

on eHandshakeRequest do {
/* send TLS packet to network with SNI information */ }

}
state WaitingHandshake {

on eHandshakeResponse do {
/* update handshake variable and go to Sending */ }

}
state Sending {

on eEncryptedRequest do {
/* send encrypted data to network , go to Wait4Response */ }

}
state Wait4Response {

on eEncryptedResponse do {
/* process data and go to Sending */ }

}
}
machine Adversary {

start state Init { }
state SNIMonitoring {

/* monitor TLS -SNI field to detect meek traffic */ }
state TrafficProfiling {
/* monitor packet sizes to detect meek traffic */ }

}

Figure 4: High-level definition of a censored client and an
adversary inWeirdDSL. Machines are data structures where
it is possible to define events that occur given some action.

4.1 Modeling inWeirdDSL

The properties of meek that we want to prove are stated in Figure 3.
The first property is channel confidentiality, where the adversary
will try to distinguish between traffic generated either by the ap-
plication channel or by the HCS channel. The second property is
anonymity, where the adversary will try to detect the identity of
some user based on the traffic it sees. Note that these properties are
defined against the SNI monitoring adversary specified in Figure 4.
Client, network and adversaries are defined as P machines in the
WeirdDSL. For example, Figure 4 shows how a censored client and
the adversary can be modeled in VeriWeird.

We assume a tool like NetDiffusion is used to simulate back-
ground traffic. Once packet sizes are sampled from NetDiffusion,
one might compute parameters like mean and standard deviation
and use these parameters to define an approximation in Easy-
Crypt—for instance, using a normal distribution centered around
the observed mean ± one standard deviation. This refined distri-
bution replaces toy assumptions in the background traffic model,
making the detection analysis more realistic. This approach pro-
vides a principled pipeline: train NetDiffusion on background traces,
sample synthetic traffic, extract traffic profile distributions, inte-
grate them into formal models, and verify detection bounds. The

3

google.com
amazon.com


Proceedings on Privacy Enhancing Technologies YYYY(X) Vitor Pereira, Ahmed Irfan, Vinod Yegneswaran, Nick Feamster, Prateek Mittal, and Vitaly Shmatikov

result is a hybrid methodology that blends statistical realism with
provable guarantees—enabling more credible evaluations of censor-
ship resistance strategies.

4.2 Modeling in EasyCrypt

op get_sni : domain -> sni.
module Distr = {
proc Meek_profile_dist() : traffic_profile = {
base <$$ uniform(497, 527); // Normal approx
return base;

}.
proc background_profile_dist() : traffic_profile = {
base <$$ uniform(1000, 1050); // Poisson-like
return base;

}.
proc background_domain_dist() : domain = {
r <$$ bernoulli(0.0001);
return if r then front_domain else background_domain;

}. }.
module type TLS_ENCRYPTION = {
proc encrypt(d: domain, m: message) : ciphertext

}.
module Adversary(Enc : TLS_ENCRYPTION) = {
proc is_meek_pattern(profile : traffic_profile) : bool = {
return (profile >= 497) && (profile <= 527);

}
proc detect_meek(s : sni, p : traffic_profile) : bool = {
if s = get_sni(front_domain) then {
return is_meek_pattern(p);

} else { return false; }
} }.

module MeekEnc : TLS_ENCRYPTION = {
proc encrypt(d: domain, m: message) : ciphertext = {
c.sni_info <- get_sni(d);
if m = real_msg then {
c.profile <@ Distr.meek_profile_dist();

} else {
c.profile <- Distr.background_profile_dist();

};
c.payload <- m;
return c;

} }.
module Game1(Enc : TLS_ENCRYPTION) = {
proc main() : bool = {
d <- front_domain; (* domain *)
m <- real_msg; (* message *)
c <@ Enc.encrypt(d, m); (* ciphertext *)
b <@ Adversary(Enc).detect_meek(c.sni_info, c.profile);
return b;

} }.
module Game0(Enc : TLS_ENCRYPTION) = {
proc main() : bool = {
d <@ Distr.background_domain_dist(); (* domain *)
m <- cover_msg; (* message *)
c <@ Enc.encrypt(d, m); (* ciphertext *)
b <@ Adversary(Enc).detect_meek(c.sni_info, c.profile);
return b;

} }.
lemma true_positive_detects_normal:
Pr[Game1(MeekEnc).main() = true] = 1%r.

lemma false_positive_from_poisson_tail:

Pr[Game0(MeekEnc).main() = true] <= (1%r /% 10000%r) * (1%
r /% 1000%r).

Summary of Implications. This model illustrates a realistic
adversarial strategy that combines: (1) SNI-based filtering: blocks
all traffic using the known front domain. (2) Traffic pattern clas-
sification: applies statistical profiling to reduce false positives.

Under the assumptions (𝑖)meek traffic has consistent packet size
behavior (normally distributed around 512) and (𝑖𝑖) background
traffic does not resemble meek traffic and has distinct statistical
characteristics. The implications are:

• the adversary achieves a true positive rate of 1.0, meaning
it detects almost all actual meek flows;

• the false positive rate is extremely low due to the low
overlap in SNI usage and distinct distributions; and

• therefore, meek is vulnerable to detection in environments
where censors can combine visible metadata (SNI) with pas-
sive statistical analysis.

5 Challenges and Future Directions
This work represents an initial foray toward building a formal veri-
fication toolchain for analyzing censorship circumvention systems.
Developing such a toolchain introduces a number of significant
challenges across multiple dimensions, including protocol model-
ing, proof formalization, tooling limitations, and practical usability.
At the modeling level, encoding HCS protocols within a simulation-
based cryptographic framework demands a high-fidelity represen-
tation of adaptive network behavior and adversarial censorship
strategies. Since many HCSs are designed to closely imitate benign
traffic, formalizing these mimicry techniques in a way that supports
rigorous analysis is both subtle and technically demanding.

From a proof perspective, simulation-based security requires con-
structing a simulator that can generate transcripts indistinguishable
from those of the real system—often a nontrivial task, particularly
when working with interactive protocols and adaptive adversaries.
While EasyCrypt offers a powerful foundation for reasoning about
probabilistic and relational properties, applying it to the domain of
censorship resistance exposes limitations, especially as protocols
become more interactive or as adversaries are modeled with ad-
vanced capabilities such as deep-packet inspection, traffic shaping,
or selective packet dropping.

Finally, to support broader adoption within the circumvention
research community, the long-term vision of this work involves de-
signing a more accessible and user-friendly DSL. Such a DSL would
lower the barrier to entry for protocol designers and researchers,
enabling them to specify and verify HCS protocols without requir-
ing deep expertise in formal methods. While the current effort is
still in its early stages, it lays the groundwork for a principled and
extensible framework for reasoning about the security of HCSs
against powerful and evolving censorship adversaries.
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