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Abstract—Verification is an essential step of the hardware
design lifecycle. Usually verification is done at the gate level
(Boolean level). We present verilog2smv, a tool that generates
word-level model checking problems from Verilog designs aug-
mented with assertions. A key aspect of our tool is that memories
in the designs are treated without any form of abstraction.
verilog2smv can be used for RTL verification by chaining with
a word-level model checker like NUXMV. To this extent, we
present also some experimental results over Verilog verification
benchmarks, using verilog2smv+NUXMV as a tool-chain.

I. INTRODUCTION

Verification has become a fundamental step to ensure
safety and reduce overall cost of the design and production
of hardware systems. Hardware systems are often designed
by specifying their behavior using high-level programming
languages like Verilog or VHDL. These high-level designs
are then (automatically) synthesized into Register Transfer
Level (RTL) designs. The RTL specification contains the word-
level information of a design. At RTL memories present
in a design are either treated as a whole or expanded into
individual elements. RTL designs are synthesized into gate-
level logic designs and further synthesized into physical-level
logic designs. In general, formal verification is performed at
the gate level, where the structural information of the original
design is almost lost. There are successful attempts to perform
formal verification directly at RTL, though these approaches
use Model Checking (MC) techniques at the Boolean-level.

Our goal is to lift the verification of hardware designs from
gate level to RTL, exploiting recent model checking algorithms
based on Satisfiability Modulo Theories (SMT), like those
provided by the NUXMV model checker [1], [2]. In particular
we aim at handling efficiently designs with memories.

This paper describes verilog2smv, an opensource tool that
takes a Verilog design with simple SystemVerilog assertions
and generates a MC problem at RTL in two formats: the
BTOR [3] and NUXMV [4] formats. We choose Verilog [5]
and SystemVerilog assertions [6] as they are widely used in
the hardware design automation industry. Our tool handles
natively memories in the design using fixed size bit-vectors
and arrays. This allows to avoid both the blasting of memo-
ries into bit-vectors and their abstraction (this is the culprit
characteristic of our tool). We remark that, to the best of
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our knowledge, the majority of the Verilog conversion tools
usually loose memory information by either abstracting or
expanding memories.

This paper makes the following contributions. First, we
provide a verification tool-chain, based on Yosys [7]— a Verilog
synthesizing tool, and on NUXMV [2]- a modern model
checker. We have extended Yosys to generate MC problems
from Verilog and SystemVerilog assertions, in the NUXMV
format, to be then analyzed with the advanced model checking
algorithms provided by NUXMV. Moreover, the tool-chain
allows also to generate word-level MC problems in other target
languages to experiment with different verification back-ends.
Finally, we carried out an experimental analysis on real-world
Verilog verification benchmarks with registers and memories.
We compare our tool-chain using different back-end verifi-
cation algorithms provided by NUXMV against other related
tools. The results shows that our tool-chain performs sensibly
better than the considered existing approaches. verilog2smv
and all experimental data are freely available online [§].

This paper is organized as follows. In Section II we discuss
related works. In Section III we describe the architecture of
our tool-chain and we provide a small example. In Section IV
we show the results of our experimental evaluation. Finally, in
Section V we draw conclusions, and we outline future work.

II. RELATED TOOLS

We mention some tools that can be used to convert Verilog
designs into verification problems. (We omit considering tools
which are no more maintained, like e.g. vI2mv [9].)

The following tools are publicly available. V3 [10] reads
Verilog designs and produces word-level BTOR designs using
QuteRTL [11] as a Verilog frontend. ABC [12] has its Verilog
frontend, which transforms the designs into gate-level designs
for verification. It cannot produce word-level MC problems.
EBMC [13] takes Verilog designs with assertions and pro-
duces SMT formulas by applying BMC and/or k-induction. It
can also output Boolean-level MC problem in SMV format.
(EBMC is the successor of VCEGAR [14], which is no more
maintained.) Yosys [7] is a freely-available synthesis tool from
high-level Verilog to RTL and gate-level Verilog. A very-
recent version can also produce SMT formulas representing
combinatorial circuit designs. Cadence-SMV [15] can take
Verilog design as input, generating Boolean-level SMV design
(in its publicly-available version). AVERROES [16] is a ver-
ification tool which takes input Verilog designs and invariant
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Fig. 1. verilog2smv architecture and verification tool-chain

properties. With the exception of EBMC, they all cannot
handle memories without abstracting or blasting them.

The following tools are not publicly available. AiPG [17]
is a verification tool built on top of Boolector [18]. It takes
Verilog designs and assertions as input. It can also produce
BTOR designs. Reveal [19] is a tool for the verification of
Verilog designs against assertions. SIXTHSENSE [20] is a
verification tool by IBM which can handle Verilog designs.

III. TOOL ARCHITECTURE

The architecture of verilog2smv is depicted in Figure 1,
which also shows verilog2smv + NUXMV tool-chain. ver-
ilog2smv takes in input a Verilog design, written in Verilog
IEEE standard 2005 [5]. We assume the Verilog design falls in
the synthesizable subset of Verilog [21]. We provide two com-
plementary ways to specify the properties to be checked within
the Verilog design. Properties can be specified within the
Verilog model using the SystemVerilog assert statement.
The assert statement can appear in the procedural block
or in the module body of the Verilog design (see assert at
lines 10-11 in the example in Figure 2). Properties can also be
specified with a conventional notation by means of a single-
bit output wire, whose name starts with safety (see e.g. the
safetyl wire in Figure 2). The value of this output wire
needs to be driven high when the property is met.

verilog2smy is built on top of Yosys [7]. The flow of the
translation is the following: We leverage on Yosys to first
flatten the Verilog high-level design, and then to synthesize
the RTL circuit from the result of the flattening process.
The RTL circuit is stored in the Yosys internal representation
RTLIL. Yosys follows the IEEE Verilog standard synthesis
semantics [21]. The RTL circuit goes in to a new Yosys module
that translates the input RTL circuit into a corresponding
NUXMV and BTOR [22] problem. The translation preserves all
the names of signals, registers, and memories of the original
Verilog design. This makes it easy to interpret back in Verilog,
possible counterexamples produced by the back-end model
checkers. We explicitly model clock as Boolean input variable.
This enables us to faithfully model flip-flops, memories, and
latches, which the other translation without explicit clock can
not do. The translation does not currently handle multiple

module array (input clk, output safetyl);
reg [7:0] counter;
reg [7:0] mem [7:0];

always (@ (posedge clk) begin
counter <= counter + 8’'dl;

O 001NN RN —

mem[counter] <= mem[counter] + 8’dl;
end
10 assert property (! (counter > 87d0) ||
11 mem[counter — 8’dl] == counter - 8’dl);

13 assign safetyl =
14 | endmodule

(counter > 8’d0);

Fig. 2. Specifying property in Verilog design

clocks, multi-dimensional arrays, and combinational logic
loops. Note that the translation module considers only the parts
of the design that are in the cone of influence of the specified
properties.

The two target verification languages, BTOR and NUXMV,
allow to specify and reason about transition systems. NUXMV
language allows to express transition systems using all the
finite data types allowed by NUSMYV [23] (Booleans, enu-
merative, bounded integers), plus bit-vectors, reals, integers,
and (finite and infinite) arrays, with no restriction on the
specification of the initial values of the variables. On the other
hand, BTOR is much limited: 1) it can only deal with bit-
vectors and one-dimensional arrays; 2) registers are implicitly
initialized to value zero value, while arrays are uninitialized.
In both cases we represent Verilog registers of width greater
than one, with with corresponding variables of type bit-vectors
within NUXMV and BTOR. However registers with width one
are treated differently: NUXMV treats them as Boolean, while
BTOR treats them as bit-vectors of width one. Memories in
both cases are encoded with arrays of bit-vectors.

Notice that the conversion into BTOR is not complete in
the sense that it currently supports zero-initialized registers
and uninitialized memories.

Figure 3 shows the NUXMV file generated with verilog2smv
starting from Verilog module array as described in Figure 2.
We see that the memory mem is retained in the NUXMV
file, as an array (declaration mem array word[3] of
word[8] at line 7). In the translation, we also introduce ex-
plicitly the clock and we model it as an input Boolean variable
(see the c1k input variable at line 3). Initial blocks in a Verilog
design is converted into INIT constraints in the NUXMV file.
In this example, since there is no initial block, the INIT
constraint is simply the constant TRUE. The assignments to
registers and memories are translated into TRANS constraint.
(For details about the NUXMV syntax, we refer the reader
the NUXMV user-manual [4].) Properties are simply translated
into corresponding INVARSPEC. The assert command in
Figure 2 is translated into the first INVARSPEC, while the
property corresponding to wire satisfyl is encoded into
the second and last INVARSPEC.



1 |MODULE main

2 | IVAR

3 |"clk" : boolean;

4

5 | VAR

6 | "counter" : word[8];

7 |mem : array word[3] of word[8];

8

9 | DEFINE

10 |__exprl := resize(Oub8_11111111, 1);

11 |_expr2 := bool(__exprl);

12 | _expr3 := "counter"[2:0];

13 |_expr4 := READ (mem, __expr3);

14 | __expr5 := (__exprd + 0ub8_00000001);
15 |_expr6 := ("clk");

16 | __expr7 := (_expr6 & __expr2);

17 | _expr8 := WRITE (mem, __expr3, __expr5);
18 | _expr9 := ("counter" + 0ub8_00000001);
19 | _exprl0 := ("clk");

20 | _exprll := (__exprl0 ? __expr9 : "counter");
21 | _exprl2 := next ("counter") = __exprll;
22 | _exprl3 := (case __expr7: __expr8;

23 TRUE: mem; esac);

24 | __exprld := next (mem) = __exprl3;

25

26 | .

27 | _expr24 := (_exprl8 | __expr23);

28 | _expr25 := bool (Oubl_1);

29 | _expr26 := (__expr25 -> __expr24);

30 |__expr27 := ("counter" > 0ub8_00000000);
31

32 | INIT TRUE;

33 | TRANS __exprl5;

34 | INVARSPEC __expr26;

35 | INVARSPEC ___expr27;

Fig. 3. NUXMV file for the Verilog design shown in Figure 2.

IV. EXPERIMENTAL EVALUATION

In this section we describe an experimental evaluation
we carried out to show the effectiveness of the ver-
ilog2smv + NUXMV tool-chain.

A. Setup of the experimental evaluation

We have considered a set of benchmark problems, Verilog
files and invariant properties files, from the VIS [24] and
VCEGAR [25] benchmark suites. The collection includes 42
problems with memories and registers (40 from VIS and 2
from VCEGAR) and 44 problems with registers only (14 from
VIS and 29 from VCEGAR), totalling 86 problems.

We have compared our tool-chain against v3, AVERROES,
and EBMC on the collected benchmarks. We have also
used the very-recently released version 4.2 of EBMC. Un-
fortunately, we can show results against EBMC only be-
cause v3 and AVERROES either were not able to pro-
cess most of the Verilog designs we collected, or they
crashed without producing results. One remark is in or-
der: Since most of the memories and registers benchmarks
have initialized memories, this prevents us from using the
BTOR generator of our tool and from comparing against
model checkers that can take BTOR as input. For bench-
marks that contain both memories and registers, we have
considered the following verification algorithms offered by
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Fig. 4. Accumulated Plot for benchmarks with memories and registers
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Fig. 5. Accumulated Plot for benchmarks with registers only

NUXMV: a) nuxmv—k—ind, SMT-based k-induction/BMC; b)
nuxmv-bmec, SMT-based BMC; ¢) nuxmv—-ic3-ia, SMT-
based IC3 with implicit abstraction [1]. For registers-only
benchmarks, besides a), b), and c), we have also considered d)
nuxmv-1ic3 SAT-based IC3 [26]. For each NUXMV configu-
ration, the bound is 1000. For EBMC we use the the following
configurations: e) ebmc—-100, k-induction/BMC with bound
100; f) ebmc-1000, k-induction/BMC with bound 1000; g)
ebmc42-100, EMBC 4.2 using k-induction/BMC with bound
100; h) ebmc42-1000, EBMC 4.2 using k-induction/BMC
with bound 1000. We have run our experiments on a cluster of
64-bit Linux machines with 2.7 GHz Intel Xeon X5650 CPUs,
with memory limit of 4GB and time limit of 3600 seconds.

B. Results

The results of the experiments are shown in form of accu-
mulated plots, where on the x-axis we have the accumulated
solving time and on the y-axis we have the number of solved
instances. Figure 4 shows the results for the 42 benchmarks
with memories and registers; Figure 5 shows the results for
the 44 benchmarks with registers only. In the plots, we also
show nuxmv-best which is virtual best configuration for
NUXMV.



C. Discussion

The results clearly show that our tool-chain is performing
better than EBMC, on the selected benchmarks. In partic-
ular, we see that on the benchmarks with memories and
registers, nuxmv-k-ind has solved 33 benchmarks (22
safe, 11 unsafe), instead nuxmc—ic3—-1ia has been able to
solve 28 benchmarks (25 safe, 3 unsafe). ebmc42-100 has
solved only 19 benchmarks (9 safe, 10 unsafe). We notice
that nuxmv-ic3—-ia has solved more safe instances than
nuxmv-k—-ind, probably since the former uses abstraction.
However nuxmv—-ic3-ia has solved less unsafe instances
than nuxmv—-k—-ind, probably due to the limited support for
array abstraction refinement in NUXMV. We skip the discus-
sion for older version of EBMC, i.e. ebmc—* configurations.

For the benchmarks with registers only, nuxmv-ic3-ia,
nuxmv—-1ic3, and nuxmc—-k-ind are much closer. Indeed
the first has solved all the 44 benchmarks (35 safe, 9 unsafe),
the second has solved 43 benchmark (34 safe, 9 unsafe),
and the last one has solved 41 benchmarks (32 safe, 9
unsafe). Interestingly nuxmv—-ic3-ia, which is an SMT-
based IC3, has shown better performance than SAT-based IC3
nuxmv-1ic3. ebmc42-100 has only solved 31 benchmarks
(26 safe, 5 unsafe).

We conjecture that EBMC is slower than the nuXmv-based
tools because it is not exploiting incrementality while solving.

Importantly, whenever terminating, on the latter benchmarks
all tools always agree on the result, whilst on the former ones
all nuxmv—+ and ebmc-+ always agree, whilst ebmc42-x
disagrees with both nuxmv—-+ and ebmc—-* on two instances.

We remark that, verilog2smv has the ability to generate
benchmarks in different formats. In particular, It can generate
Boolean-level benchmarks in AIGER [27] format either using
synthebtor tool, from the Boolector distribution, or using
the converter in AIGER format built-in in NUXMV. This
will enable for generating benchmarks and experimenting
with any model checker from the hardware model checking
competition. Once we have extended the BTOR generator
with explicit initialization (see future works in Section V), we
will do an evaluation with other model checkers. It can also
generate VMT [28] models in VMT format using the NUXMV
model checker. VMT is an extension of SMTLIB [29] format
to represent theory level transition systems.

V. CONCLUSION AND FUTURE WORK

We have presented verilog2smv, which converts Verilog
designs with assertions into RTL MC problems, while fully
treating memories. We believe that verilog2smv will be helpful
in pushing research on the verification of RTL designs with
large memories. We also presented a Verilog RTL verification
tool-chain using verilog2smv and NUXMV model checker, and
have shown effectiveness of the tool-chain by evaluating on a
collection of Verilog benchmarks.

There are many possible directions, where verilog2smv
can be extended. One possible direction is to extend the
support to full SystemVerilog properties. Another direction
is to extend the BTOR generator to encode initialization of

registers and memories in the transition constraint. A rather
ambitious future direction would be extending verilog2smv
to convert Verilog designs into threaded software program.
This conversion will help in doing verification of high-level
Verilog designs. With respect to the Verilog verification tool-
chain, there is a possibility to improve the connection between
verilog2smv and NUXMV, e.g. translating counterexample into
VCD format.
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