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Introduction

ACAS sXu
Development led by FAA.
Variant of ACAS Xu [1] for unmanned aircraft.
Uses numeric lookup tables (large in size) for decision making.

Challenges
Limited memory availability and large tables size.
Deep neural network approximation of the tables reduces the size
by a factor of 1000 [2].
Big question: How can we gain trust in DNNs?

Our Answer
Apply formal verification to gain trust in DNNs.
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Background
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ACAS sXu Table (Prototype)

Ownship

vown Intrudervint

ρ

ψ

θ

Variable Description Values Num

ρ (ft) Range to intruder [499, 36656] 20
θ (rad) Bearing angle to intruder [−π, π] 41
ψ (rad) Relative heading angle of int. [−π, π] 41
vown (ft/s) Ownship speed [100, 472] 6
vint (ft/s) Intruder speed [0, 1200] 12
τ (s) Time to loss of vert. separation [0, 101] 10
sadv Previous advisory COC, WL, WR 5

SL, SR
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Deep Neural Networks (DNN)
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DNN Training
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DNN Training

To reduce the time to evaluate the networks, we trained 50
networks: one for each combination of sadv and
τ ∈ {0, 1, 5, 10, 20, 40, 60, 80, 100, 101}.
DNN architecture: 5 inputs, 5 outputs, and 5 hidden layers.
ρ and θ were converted to Cartesian coordinates x and y via
x = ρ cos θ and y = ρ sin θ.
Each network was trained for 200 epochs with a batch size of 512
and the Adam gradient descent method.
In total, the 50 network representation requires 792 kB of memory
using 32-bit floating point precision, which is a 2600× reduction in
representation size.
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Policy Comparison: Table and DNN Representation
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Verification of DNNs
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Verification of the DNN Representation

Verification of DNNs in isolation
Local Robustness.

Verification of closed-loop system with DNNs
Reachability Analysis.
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Local Robustness

Intiutively
Local robustness means that the network behaves similar (produces
same output) on neighboring points to the training points.

Challenges
Computational cost: 810,000 training points per network.
Decision boundaries: should not expect the local robustness to hold.

Our Approach
Cluster training points into hypercubes.
Compute robust volume ratio for each hypercube.
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Local Robustness – A Hypercube Approach

Step-1
Decompose the training points into clusters of adjacent points with
the same output label.
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Local Robustness – A Hypercube Approach

Step-2
Decompose the points in the same cluster into sets of points such
that they can be symbolically represented by a hypercube.
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Local Robustness – A Hypercube Approach

Step-3
Compute the volume of adversarially robust regions in each
hypercube.
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Local Robustness – Compute robust volume ratio
Observations

For a hypercube generated by the clustering method, it is likely that it
is not fully robust.
However, treating the full volume of hypercube as unrobust is not
correct.

Details
If a hypercube is robust, then we calculate its volume.
Otherwise, if the hypercube volume is below a certain threshold
then the hypercube is treated as unrobust else we partition the
hypercube into k disjoint hypercubes and check their robustness.
This process is continued till all the hypercubes are marked as either
robust or unrobust.
The robust volume ratio is computed as the ratio of the sum of
volume of the robust hypercubes to the volume of all hypercubes.
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Local Robustness – Results

Hypercubes Clustering Statistics
Step-1 and Step-2 finished within 12 hours.

Max Min Median Mean

# Clusters 7252 196 4971 5067
# Hypercubes 87631 2445 70834 75801
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Local Robustness – Results
Robust Volume Computation – (Proof of concept)

Randomly sampled 36,375 hypercubes (1% of the total hypercubes)
For 36,277 hypercubes, Marabou with 4 threads completed the task
within 20 minutes.
For 95 hypercubes, Marabou with 8 threads took less than 2 hours.
For the remaining 3 hypercubes, Marabou with 96 threads finished
within 45 minutes.

Robust Volume Percentage
Median robust percentage: 99.66%
Mean robust percentage: 97.68%
41 out of 45 networkds have robust percentage greater than 95%
3 networks have robust percentage above 80%
1 network has the percentage of 67.03%
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Closed-Loop System Analysis

Observation
DNNs are not 100% locally robust.
Can we say something more about safety in the closed-loop setting?

Our approach
Apply the reachability method proposed in [3].
We took the dynamical model also from [3].
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Closed-Loop Dynamical Model

Assumptions
1 ownship and 1 intruder.
Both aircraft maintain constant turn rates and constant speeds.
vown = 186 ft/s
vint = 142 ft/s
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Closed-Loop Dynamical Model

Dynamical Model
The dynamics are a funtion of the ownship and intruder turn rates:
uown and uint respectively.
Advisory specifies limits on turn rates:

Aircraft Advisory umin (◦/s) umax (◦/s)

Ownship COC −δ δ
Ownship WL 1.5− δ 1.5 + δ
Ownship WR −1.5− δ −1.5 + δ
Ownship SR 3.5− δ 3.5 + δ
Ownship SL −3.5− δ −3.5 + δ
Intruder N/A −δ δ
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Closed-Loop Dynamical Model

Dynamical Model
New positions of the ownship and the intruder:

x ′own = vown
sin(uown)

uown

y ′own = vown
1− cos(uown)

uown

x ′int = x + vint
sin(ψ + uint)− sin(ψ)

uint

y ′int = y + vint
cos(ψ)− cos(ψ + uint)

uint
.
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Closed-Loop Dynamical Model

Dynamical Model
New positions as the position of the intruder aircraft relative to the
ownship’s new position and heading direction:

x
y
ψ

vown
vint
τ

sadv


←



(x ′int − x ′own) cos(uown) + (y ′int − y ′own) sin(uown)
(y ′int − y ′own) cos(uown)− (x ′int − x ′own) sin(uown)

ψ + uint − uown
vown
vint

max(0, τ − 1)
s ′adv
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Reachability Analysis

Reachability Method [3]
Split the input region into small cells.
Using a DNN verification tool, compute which advisories can be
given within each cell. (Over-approximation of the neural network.)
Initial set of reachable R0 is the set of states that could occur before
the neural network takes action.
For each t, we compute Rt+1:

I for each cell c in Rt , compute all the possible advisories Ac ,
I using system dynamics to compute all the cells reachable Rc,a in the

next time step from the cell c when any advisory in Ac is applied,
I Rt+1 is the union of Rc,a for every c ∈ Rt and for each advisory in Ac .

Repeat the process until an NMAC cell is found reachable or R
converges.
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Reachability Analysis – Results

Implementation and Setup Details
Adapted the reachability code developed previously [3].
Used Reluval [4] as the underlying DNN verification tool.
Memory limit of 16GB.

Set of Experiments
Precise turn rates: δ = 0 ◦/s

I Coarse Grid.
I Fine Grid.

Larger values of δ.
Horizontal separation initial set.
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Reachability Analysis – Results: Precise Turn Rates

Coarse Grid
Coarse grid discretization (6.86 million cells): 136 units in x and
140 units in y more dense near the NMAC region. ψ was discretized
to 360 one-degree segments.
Reluval took about 3 hours for each network.
Reachability analysis was not conclusive: NMAC was reachable in
the over-approximated reachable set.
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Reachability Analysis – Results: Precise Turn Rates

Fine Grid
Fine grid discretization (34.6 million cells): 334 units in x and 288
units in y more dense near the NMAC region. ψ was discretized to
360 one-degree segments.
Reluval took about 4 hours for each network.
Reachability analysis concluded safe: NMAC was not reachable in
the over-approximated reachable set.
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Reachability Analysis – Results: Precise Turn Rates (Fine
Grid)
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Points not Covered in the Talk

Conversion from Polar to Cartesian coordinates.
Handling of Cartesian coordinates in the computation of the robust
volume ratio.
Reachability analysis on larger values of δ and horizonal separation
initial set.
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Conclusion
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Thank you!

Conclusion
Presented a methodology for formally verifying a DNN-based
collision avoidance system for small unmanned aircraft.
Hypercube clustering can be used to verify local robustness of
multiple single-points.
DNNs are not locally robust everywhere, but using reachability
analysis, we can show that the closed-loop system with the neural
network cannot reach an unsafe state.

Future Work
Improving clustering algorithm with polytopes.
Automatic over-approximation refinement in the reachability method.
Relaxing the assumption about constant velocities of the ownship and
the intruder in the reachability analysis.
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