
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

Decision Heuristics in MCSat

Thomas Hader1, Ahmed Irfan2(�)[0000−0001−7791−9021], and
Stéphane Graham-Lengrand2[0000−0002−2112−7284]

1 TU Wien, Vienna, Austria
thomas.hader@tuwien.ac.at

2 SRI International, Menlo Park, CA, USA
{ahmed.irfan,stephane.graham-lengrand}@sri.com

Abstract. The Model Constructing Satisfiability (MCSat) approach to
Satisfiability Modulo Theories (SMT) has demonstrated strong perfor-
mance when handling complex theories such as nonlinear arithmetic.
Despite being in development for over a decade, there has been limited
research on the heuristics utilized by MCSat solvers as in Yices2. In this
paper, we discuss the decision heuristics employed in the MCSat ap-
proach of Yices2 and empirically show their significance on QF_NRA
and QF_NIA benchmarks. Additionally, we propose new ideas to en-
hance these heuristics by leveraging theory-specific reasoning and draw-
ing inspiration from recent advancements in SAT solvers. Our new ver-
sion of the MCSat Yices2 solver not only solves more nonlinear arith-
metic benchmarks than before but is also more efficient compared to
other leading SMT solvers.

Keywords: SAT · SMT · MCSat · Decision heuristics.

1 Introduction

Satisfiability modulo theory (SMT) is the backbone for countless verification
and synthesis techniques that require expressive logical theories like real/inte-
ger arithmetic [4,28]. Modern SMT solvers rely on the combination of Boolean
level reasoning with theory-specific methods through the Conflict-Driven Clause
Learning with theory support (CDCL(T)) paradigm [30] or the Model Con-
structing Satisfiability (MCSat) approach [23,26]. The former employs off-the-
shelf Boolean satisfiability (SAT) solvers as its core reasoning engines that aims
to enumerate Boolean assignments, which are subsequently checked for theory
compliance by independent theory algorithms. The latter lifts the Boolean-level
Conflict-Driven Clause Learning (CDCL) algorithm to the theory level, incre-
mentally building theory assignments alongside Boolean assignments, enabling
a closer integration of theory reasoning in the Boolean search process. This ap-
proach is particularly effective for handling complex arithmetic theories, e.g.
nonlinear arithmetic.

During the last couple of decades, SAT solving has gained impressive per-
formance improvements by various techniques [7], many of which are arguably

https://doi.org/10.5281/zenodo.15221735

2 T. Hader et al.

related to heuristics. These improvements of SAT solvers had positive impact on
SMT solvers. For CDCL(T) solvers, performance gains in SAT engines translates
to improvements in the propositional core of the SMT solver [18]. However, as
theory engines are decoupled from SAT solving, improvements in SAT do not di-
rectly translate to better theory engines in general (except for the theories that
can be reduced to SAT, e.g. bitvectors [16]). In contrast, MCSat-based SMT
engines perform theory reasoning similarly to how SAT solvers handle Boolean
reasoning, making them more adaptable to heuristics from SAT solving with
minimal modification.

A family of such heuristics are decision heuristics. Whenever a decision is to
be made to continue the search, the decision heuristic selects a yet unassigned
variable and a value to assign it to. Those decisions have a fundamental influence
on how the search proceeds. In SAT solving, decision heuristics have had a
substantial part in the success of modern solvers [7]. By tuning decision heuristics
in MCSat, we show that the performance of MCSat solver can be improved
without any changes to the actual theory solving techniques.

Contributions. In this work we present (i) a detailed summary on how well-estab-
lished decision heuristic techniques from SAT can be adapted to the MCSat-based
SMT approach (Table 1) and (ii) solutions for additional challenges and opportu-
nities that arise for domains beyond the Boolean domain. We also (iii) show de-
tailed experimental results on the performance implications for different heuris-
tics in the MCSat engine in Yices2 on the SMT logics QF_NRA and QF_NIA–
benchmarks taken from the SMT-LIB [3].

Related Work. The MCSat implementation in Yices2 that powers non-linear
integer reasoning [22] has already been utilizing some heuristics discussed in
this work (particularly exponential Variable State Independent Decaying Sum
(VSIDS) (EVSIDS) and value cache). However, the specifics were not discussed
and also no empirical evaluation of their impact was provided in [22]. This paper
addresses this gap. Besides Yices2, different MCSat variable selection heuristics
in the SMT-RAT [14,1] solver have been presented in [29] for the theory of
non-linear reals.

Table 1: Established SAT technologies and their MCSat version
SAT MCSat Section

VSIDS Theory-based VSIDS 3.1Reason side bumping Boolean Scaling
Phase Saving Value Cache

3.2Target Phases Target Cache
Rephasing Recaching

Decision Heuristics in MCSat 3

The work of [18] proposed an enhanced interface from CDCL(T)-based solvers
to off-the-shelf SAT solvers, which improved the performance of cvc5 [2,33] by
tightly integrating the state-of-the-art SAT solver CaDiCaL.

MathSAT5 [13,12,11], which is a CDCL(T)-based SMT solver, allows for
the use of different pluggable SAT solvers as the core SAT solver. However, the
authors reported in [13] that there were no significant performance improvements
from using external pluggable SAT solvers.

2 MCSat Overview

MCSat applies CDCL-like mechanisms to perform theory reasoning either as
a dedicated theory solver (e.g., for non-linear real arithmetic: Z3/nlsat) or as
a fully-fledged stand-alone engine (Yices2, SMT-RAT) that is capable of han-
dling multiple theories. The MCSat architecture consists of a core solver, an
assignment trail, and plugins for theory reasoning.

Core solver. The core solver explicitly and incrementally constructs models with
Boolean and first-order variable assignments – maintained in the assignment trail
– while maintaining the invariant that none of the constraints evaluate to false.
Fig. 1a shows high-level pseudo-code for the MCSat search procedure. The core
solver propagates the trail information by calling the propagation function of
each plugin (line 3). If a conflict is found during propagation, it checks if there
is any decision to backtrack over (line 9). If so, it learns a lemma, back-jumps
(line 11) and continues the loop. If not, it returns UNSAT (line 13). One of
the key steps in MCSat is performing conflict analysis when a plugin detects a
conflicting state. The lemmas learned via conflict analysis are based on theory-
specific explanations, provided by the plugins, of conflicts and propagations.
Note that Fig. 1a shows the restarting (lines 4-5) and variable scoring (line 10)
mechanisms, which we will discuss in the next section. Furthermore, like SAT
solvers, MCSat also performs clause database cleaning, which is not shown in
the code for simplicity.

Plugins. They provide assignments for decisions, perform propagations, detect
conflicts, and produce explanations. In modern MCSat engines, propositional
reasoning is handled like any other theory by a dedicated plugin. When the core
solver asserts a formula during search, each plugin (incl. the Boolean plugin)
scans the formula and reports to the core solver all sub-terms that are relevant
to the plugin’s theory, namely those sub-terms that “appear as variables” to the
theory, a.k.a. theory variables (actual variables or terms whose head symbols are
not in the theory’s signature), and such that a value assignment to those sub-
terms would uniquely determine the truth value of the formula according to the
theory. Relevant terms are then treated as MCSat variables — the core solver
can decide or propagate value assignments for them. Plugins typically keep a
set of feasible values for their theory variables. Whenever one of these sets gets
empty, a conflict is raised and the plugin provides a conflict explanation clause
that excludes the current trail and may even contain new terms.

4 T. Hader et al.

1 int mcsat_solve ():
2 while (true):
3 if (propagate ()):
4 if (restarting ())
5 restart ()
6 else if (! decide ()):
7 return SAT
8 else:
9 if (explain ()):

10 bump_vars ()
11 backjump ()
12 else:
13 return UNSAT

(a) mcsat_solve method

1 bool decide ():
2 variable var = vsids_pop_unassigned ()
3 if (var != null):
4 feasible = false
5 if (has_value_cache(var)):
6 feasible = try_value_cache(var)
7 if (! feasible):
8 pick_new_value(var)
9 return (var != null)

(b) decide method

Fig. 1: MCSat search pseudo-code

Trail. The trail is the key data-structure in MCSat. It holds value assignments
for relevant terms, functioning as a partial model during the search process (and
turning into a complete model when the search concludes SAT). A term t can
be evaluated (or is evaluable) in the trail M if t has an assignment in M , or if
all closest relevant sub-terms of t have been assigned values in M . Evaluation-
consistency is maintained in the trail, ensuring that no term evaluates to different
values within it. Assignments on the trail can either be propagated or decided.

Example 1. Assume a search problem with integer (Z) variables x, y, and z and
boolean (B) terms in the input formula F .

F = (¬(x ≥ 1) ∨ (xy = 1)) ∧ (¬(xy = 1) ∨ (x+ 2yz > 0)) ∧ (z2 > 1)

A possible trail is M = J(z2 > 1) 7→⊤, x 7→ 1, (x ≥ 1) 7→⊤, (xy = 1) 7→⊤, y 7→ 1K.
It consists of a B-propagation, a Z-decision, a Z-propagation, a B-propagation,
and another Z-propagation, respectively. The choice to select x was made ar-
bitrary; any variable – Boolean or integer – which was not already on the trail
could have been chosen. A different choice, say z, or a different value, say −1,
would have led to different propagations and the search in a different direction.

Decision Heuristic. The purpose of this heuristic is to pick (i) a variable to
decide, and (ii) a value to assign to the variable. The former is part of the
MCSat core as the decision is made over relevant terms of all involved theories.
Theory plugins can, nevertheless, influence the heuristic by increasing the weight
of a variable and make it more likely to be picked. This process is called bumping
a variable. Selecting a value is done by the relevant theory plugin. In Example 1,
the variable x was picked by the central selection heuristic and the value 1
was chosen by the dedicated plugin for integer reasoning. As we will show in the
following section, decision heuristics have a crucial impact on solver performance.

Decision Heuristics in MCSat 5

3 MCSat Decision Heuristics

In this section, we discuss the decision heuristic for variable and value selection
that have been implemented in the MCSat scheme of the Yices2 SMT solver.
The importance of these heuristics is demonstrated through experiments, which
have not been previously explored in earlier Yices2 MCSat papers [22,19,20,21].
Additionally, we introduce new ideas on how to further improve the heuristics
by incorporating theory-specific reasoning and insights from the SAT commu-
nity. Finally, we evaluate the effectiveness of each proposed change through our
experiments. For the experiments,1 we used the benchmarks of quantifier-free
logics of nonlinear real and integer arithmetic, namely QF_NRA and QF_NIA,
from the SMT-LIB [3] release 2024 [32].

3.1 Variable Selection Heuristics

In SAT solving, heuristics for selecting the next variable usually follow the prin-
ciple that variables which often appear in learned clauses are central to the
problem structure and, thus, should be assigned early. This principle is reflected
in the VSIDS variable selection heuristic, which was originally presented in the
SAT solver Chaff [25]. An adaption named EVSIDS, originally implemented in
the MiniSAT solver [17], is implemented in many state-of-the-art SAT solvers
(e.g. CaDiCaL [5]) and has been crucial for their high efficiency [8,7]. Modern
MCSat engines (e.g. Yices2, SMT-RAT) have adapted a variant of the VSIDS
variable selection heuristic [23,29]. While in the SAT community other variable
selection heuristics – like variable-move-to-front (VMTF) – have been proposed
in the meantime [34,8] and modern solvers use heuristics-switching strategies on
the fly [5], EVSIDS remains the state-of-the-art in MCSat engines.

EVSIDS Heuristic [Baseline]. In EVSIDS each variable xi gets an activity
score si. Whenever xi gets bumped, si is increased by gn where g > 1 and n
is an integer that is increased at each conflict. At a decision, the variable with
the highest score (efficiently determined using a priority heap), is chosen. In
SAT solving, variables are bumped when they appear in conflict resolutions and
different bumping strategies have been proposed. For further details we refer to
relevant publications in the area of SAT solving [17,8].

In the MCSat implementation of Yices2, variables are bumped whenever
they occur in a conflict resolution, i.e. either in the conflict clause or a resolution
step. All variables are bumped once for each term they occur in, as long as the
term is not assumed to be false on the trail by Boolean reasoning. Note that, in
general, this favors non-propositional variables as they occur in many different
propositional terms. Previous research on the SMT-RAT solver in the QF_NRA
theory indicates that this behavior is beneficial for performance [29].

1 The experiments were conducted on a 96-core 2.3 GHz AMD-CPU server running
Ubuntu 24.04.1 LTS. Timeout per instance 5 minutes; memory limit 8 GB.

6 T. Hader et al.

7000 8000 9000 10000 11000 12000
instances

0

50

100

150

200

250

300

C
P

U
ti

m
e

(s
)

QF NRA

yices2-baseline

yices2-baseline-no-cache

yices2-baseline-no-vsids

5000 7500 10000 12500 15000 17500 20000
instances

0

50

100

150

200

250

300

C
P

U
ti

m
e

(s
)

QF NIA

yices2-baseline

yices2-baseline-no-cache

yices2-baseline-no-vsids

Fig. 2: Evaluation of state-of-the-art heuristics: EVSIDS and value cache

Example 2. Given a trail M and a conflict resolution containing C1 = x2y+1 >
0, C2 = x+ z ≥ 0, and C3 = y4 > 0. Assume M contains a Boolean assignment
mapping C2 to false. Then all related terms C1, C2, and C3 are bumped (once)
and the variables x and y are bumped 1 and 2 times, respectively.

Theory bumping. Theory plugins can influence the search by bumping variables
using additional, theory-based heuristics. The following examples of theory-based
bumping are implemented in Yices2:

– Whenever the real or finite field plugins detect a new term, they bump all
variables according to their polynomial degree.

– The bit-vector plugin bumps (certain) variables of new terms once.
– The plugin for uninterpreted functions and arrays bumps sub-terms of con-

flicts in the equality graph.

What performance benefit does EVSIDS provide in MCSat? We have evalu-
ated the influence of EVSIDS with theory bumping against the baseline without
EVSIDS, i.e. using a random, fixed variable order. The results are shown in
Fig. 2. They clearly show that all EVSIDS is giving a huge performance boost
over the fixed variable ordering.

Extending EVSIDS with Boolean Scaling [New Heuristic]. We could
confirm that EVSIDS is a leading technique for dynamic variable selection [29].
Although we did not recreate all experiments presented, the reader can refer
to [29] for a further evaluation on different variable ordering. However, the uni-
form bumping strategy in Yices2 can potentially reduce the chances of selecting
a Boolean variable as the next decision. To mitigate this scenario, we introduce
the Boolean scaling constant to increase the bumping of Boolean terms. It builds
upon another idea from SAT solving, where state-of-the-art solvers put emphasis
on literals of resolved clauses, instead of the conflict clause directly [5]. This idea
was first presented in [24] by accounting for the reason side rate. In Yices2, when-
ever the conflict clause C is resolved with another clause D, all literals in D \C
are bumped by the Boolean scaling factor. We use a factor of 20 for the Boolean
scaling. The results comparing different Boolean scaling are in Section 3.3.

Decision Heuristics in MCSat 7

1 mcsat_solve ():
2 while (true):
3 if (propagate ()):
4 if (restarting ()):
5 clear_hints ()
6 update_cache ()
7 restart ()
8 else:
9 if (recaching ())

10 recache ()
11 if (! decide ())
12 return SAT
13 else:
14 if (explain ()):
15 bump_vars ()
16 backjump ()
17 clear_hints ()
18 update_cache ()
19 else:
20 return UNSAT;

(a) Modified mcsat_solve method

1 bool decide ():
2 variable var = hints_pop_unassigned ()
3 if (var != null):
4 var = vsids_pop_unassigned ()
5 if (var != null):
6 feasible = false;
7 if (has_target_cache(var)):
8 feasible = try_target_cache(var)
9 else if (has_value_cache(var)):

10 feasible = try_value_cache(var)
11 if (! feasible):
12 pick_new_value(var)
13 return (var != null);

(b) Modified decide method

Fig. 3: Modified MCSat search pseudo-code (italicized and green colored)

Theory-Guided Variable Selection [New Heuristic]. While theory plug-
ins can influence EVSIDS scoring with theory bumping, there are situations in
the search where bypassing EVSIDS and directly suggesting a next variable is
beneficial. Increasing the score of a variable substantially to ensure its selection
is not wise, as this would destroy scoring for later decisions. We introduce a
mechanism that enables theory plugins to suggest the next decision variable,
so called variable hints. Hinted variables have precedence over EVSIDS and are
guaranteed to be selected as soon as possible. Fig. 3b shows the modified MCSat
decide method: note that on line 2 hinted terms are selected before the terms
suggested by EVSIDS, shown on line 4. As hints are intended to react on specific
search states, they are cleared on backtracking. Theory plugins can hint a vari-
able to the core solver whenever they detect, by theory-specific reasoning, in the
current search state that the variable is a good candidate for the next decision.
This is usually the case when a plugin has a “good” choice for a variable’s value,
i.e. the number of feasible assignments for a variable is limited or assigning a
specific value is expected to have a significant impact on the search.

Example 3. Assume a trail M and two yet unassigned real variables x and y.
A new term C is added to M that reduces the set of feasible values for x to a
single value via theory reasoning, e.g. in the case of reals, using root isolation.
However, y ∈ (−∞,∞) still holds. Then assigning x before y avoids potential
incorrect guesses on y when there is another term D(x, y).

In practice, hinting is used whenever the set of feasible assignments for a variable
is small or a singleton. Note that even if the set is a singleton, propagating the
variable with the singleton value is not generally feasible because it involves
generating a term that only contains already assigned variables (cf. [23]). The

8 T. Hader et al.

1 recache ():
2 num_recaches = get_num_recaches ()
3 clear(target_cache)
4 target_depth = 0
5 if !(num_recaches % 2):
6 value_cache = best_cache
7 clear(best_cache)
8 best_depth = 0

(a) recache method

1 update_cache ():
2 if (trail_size > target_depth):
3 target_cache = trail
4 target_depth = trail_size
5 if (trail_size > best_depth):
6 best_cache = trail
7 best_depth = trail_size

(b) update_cache method

Fig. 4: MCSat recache and update_cache methods

term is substituted for the propagated variable when building a lemma out of
conflict analysis. In the theories of reals and integers such a term cannot always
be found and hinting the next decision is a promising alternative in such cases.

A feasible set interval is an interval that (tightly) over-approximates the
feasible set. When its size is small, the associated variable is a good candidate
for decision because the possible values are limited. In Section 3.3 we evaluate a
modification to the reals/integers plugin that hints a real variable whenever its
feasible set is unit or its feasible set interval size less or equal to 1.

3.2 Value Selection Heuristics

Whenever a variable is chosen for a decision, the theory plugin responsible for
its type needs to find a value. While this is a theory-specific choice, there are
theory-independent caching heuristics that improve performance in all evaluated
theories.

Value Caching [Baseline]. The idea of value cache is to retain the value of
a variable when its assignment is undone. When a decision is to be made for
a variable, the previously cached value is used, if it is still feasible. The value
caching is a generalization of phase saving [31] in SAT solving. This approach
is based on the idea that solvers tend to revisit similar parts of the search space
repeatedly. In MCSat we use the term value instead of phase to reflect the bigger
space of potential assignments. The MCSat search loop’s decide method, as
shown in Fig. 1b, first attempts the previously assigned value (lines 5-6) by
calling the appropriate theory plugin. If the cached value is not valid (lines 7-8),
the decide method uses a new feasible value provided by the theory plugin.

Does the value caching heuristic provide performance benefits? Fig. 2 shows
plots of Yices2 with and without value caching. They show that Yices2 with
value caching solves more benchmarks and is a lot faster than the version without
value caching. Clearly, the value caching heuristic seems crucial for performance,
in particular for the integer benchmarks.

Decision Heuristics in MCSat 9

Target, Best Caching, and Recaching [New Heuristic]. While phase sav-
ing has been standard for many years in SAT solving, more recent work [10,6]
has indicated that different strategies for phase selection are beneficial. Inspired
by the success of these caching strategies and the importance of value caching in
the MCSat procedure, we have extended the MCSat search procedure to include
two additional caches: target and best, along with a recaching mechanism.

Similar to the concept in SAT, the target cache stores cached values of vari-
able assignments. However, unlike the value cache where values are updated
after each decision, which is frequently, the target cache focuses on maintaining
a promising partial assignment that does not lead to a conflict after propaga-
tion. The target cache is updated when the MCSat core solver discovers a ‘more
promising assignment’. A (partial) assignment is considered ‘more promising’
than earlier saved assignments if it assigns more variables/terms than the earlier
assignments. The target cache update occurs before a restart (when in a non-
conflicting state) and after back-jumping during conflict analysis and lemma
learning. The updated MCSat search loop is illustrated in Fig. 3a: line 6 and
line 18 execute the target cache update before a restart and after back-jumping,
respectively.

When making a decision, the value stored in the target cache takes precedence
over the value cache when selecting a value for a variable assignment. If the target
cache does not have a variable assignment, then the value from the value cache
is chosen. The revised decide method is depicted in Fig. 3b: lines 7-8 attempt
the value from the target cache first, and lines 9-10 try the value from the value
cache if needed.

As the target cache is favored for selecting variable assignments and is up-
dated based on an objective function defined by the number of assigned terms,
there is a risk of the target cache trapping the search in a local maximum state.
To address this issue, we periodically recache both the target cache and the
value cache, as also done is modern SAT solvers. Recaching is invoked during
the main search loop when the recaching limit is reached, as indicated in lines
9-10 in Fig. 3a. Recaching clears the target cache but makes use of another
cache, the best cache, to retain the most promising assignments. Similar to the
target cache, the best cache is updated when a more promising assignment is
found: Fig. 4b shows how this is done by tracking the number of assigned terms

Table 2: Evaluation of different Boolean scaling
Total (37512) QF_NRA (12154) QF_NIA (25358)

Scaling factor solved solved sat/unsat solved sat/unsat

1 28777 11197 5522/5675 17580 11964/5616
5 28946 11240 5534/5706 17706 12098/5608
10 29039 11280 5541/5739 17759 12099/5660
20 29101 11290 5556/5734 17811 12143/5668
30 29062 11293 5554/5739 17769 12119/5650

10 T. Hader et al.

7000 8000 9000 10000 11000 12000
instances

0

50

100

150

200

250

300

C
P

U
ti

m
e

(s
)

QF NRA

yices2-baseline

yices2-hints

yices2-hints-bool-scaling

yices2-new

yices2-target

yices2-target-recache

5000 7500 10000 12500 15000 17500 20000
instances

0

50

100

150

200

250

300

C
P

U
ti

m
e

(s
)

QF NIA

yices2-baseline

yices2-hints

yices2-hints-bool-scaling

yices2-new

yices2-target

yices2-target-recache

7000 8000 9000 10000 11000 12000
instances

0

50

100

150

200

250

300

C
P

U
ti

m
e

(s
)

QF NRA

virtual-best

yices2-new

yices2-new-no-bool-scaling

yices2-new-no-hints

yices2-new-no-recache

yices2-new-no-target-recache

5000 7500 10000 12500 15000 17500 20000
instances

0

50

100

150

200

250

300

C
P

U
ti

m
e

(s
)

QF NIA

virtual-best

yices2-new

yices2-new-no-bool-scaling

yices2-new-no-hints

yices2-new-no-recache

yices2-new-no-target-recache

Fig. 5: Evaluation of new heuristics

as target_depth and best_depth for the target and best caches, respectively.
The target cache and the best cache differ at the point of recaching (Fig. 4a):
the target cache is cleared at every recaching and the best cache is copied to the
value cache at every other recaching.

3.3 Evaluation of New Heuristics

In Table 2, a comparison of Yices2 using hints with different Boolean factors
(1, 5, 10, 20, 30) is shown. The table indicates that a Boolean scaling factor of
20 provides the best performance overall (when looking at the QF_NRA and
QF_NIA benchmarks in total) among the tested factors.

In Fig. 5, the top row compares the novel heuristics introduced in this
work for variable (Boolean scaling, variable hinting) and value selection (target
caching and recaching) against the baseline Yices2 (including EVSIDS and value
caching). The baseline Yices2 is represented by yices2-baseline, with addi-
tional features added on top: yices2-hints for variable hinting, yices2-hints-
bool-scaling for hinting with the Boolean scaling factor 20, yices2-target for
the target cache, yices2-target-recache for the target cache with recaching,
and yices2-new representing the configuration with all techniques.

In the bottom row of Fig. 5, various plots compare yices2-new with one
heuristic turned off (yices2-new-no-heuristic refers to the yices2-new con-
figuration without the heuristic). Additionally, the virtual best solver for these
configurations is plotted as virtutal-best. The plots reveal that all techniques

Decision Heuristics in MCSat 11

7000 8000 9000 10000 11000 12000
instances

0

50

100

150

200

250

300

C
P

U
ti

m
e

(s
)

QF NRA

cvc5

mathsat5

smtrat

yices2-baseline

yices2-new

z3

z3-no-seq-portfolio

5000 7500 10000 12500 15000 17500 20000
instances

0

50

100

150

200

250

300

C
P

U
ti

m
e

(s
)

QF NIA

cvc5

mathsat5

smtrat

yices2-baseline

yices2-new

z3

z3-no-seq-portfolio

Fig. 6: Solver performance comparison

have a positive impact on performance in QF_NIA and QF_NRA. Interest-
ingly, they contribute to solving different benchmarks, as demonstrated by the
virtual best solver, especially in the case of QF_NIA.

We have also evaluated, under the same experimental conditions, the perfor-
mance improvements on the combined theories QF_UFNRA and QF_UFNIA,
which add uninterpreted functions. In the former, we can solve all benchmarks;
in the latter we improved by almost 15%, solving 677 out of 806 with yices2-new
compared to yices2-baseline.

4 Comparison Against Other SMT Solvers

We have compared our new solver yices2-new against the Yices2 [15] base-
line yices2-baseline, cvc5 [2] (version 1.2.0), mathsat5 [13] (version 5.6.11),
smtrat [14] (version 24.06), and z3 [27,9] (version 4.13.3). We noticed that z3
implements a sequential portfolio approach for nonlinear arithmetic [9] which
can clearly be observed in the step-shaped cactus in Fig. 6. Since Yices2 does
not (yet) exploit sequential portfolio techniques, we have included in our com-
parisons a version of z3 with portfolio solving disabled (z3-no-seq-portfolio),

Table 3: Comparison with other SMT solvers. Solved benchmarks within 5 min-
utes and 8 GB RAM. Total number of benchmarks in top row.

QF_NRA (12 154) QF_NIA (25 358)
Solver solved sat/unsat time(s) solved sat/unsat time(s)

Yices2-baseline 11 022 5 394/5 628 28 829 16 436 11070/5366 141 928
Yices2-new 11 370 5 626/5 744 23 462 18 387 12 774/5 613 98 871
cvc5 11 207 5 428/5 779 36 306 13 484 8 922/4 562 312 345
MathSAT5 7 292 2 742/4 550 23 677 16 689 11 451/5 238 314 851
SMT-RAT 10 828 5 345/5 483 47 833 - -/- -
Z3-no-seq-portfolio 10 489 5 453/5 036 18 844 18 861 12 364/6 497 305 923
Z3 11 612 5 761/5 851 67 633 19 507 12 991/6 516 264 204

12 T. Hader et al.

making it algorithmically much closer, and comparable, to Yices2 MCSat. (The
z3 commands used for i) QF_NRA: z3 tactic.default_tactic=“(then simplify
propagate-values solve-eqs elim-uncnstr simplify qfnra-nlsat)”, and ii) QF_NIA:
z3 tactic.default_tactic=“(then simplify propagate-values solve-eqs elim-uncnstr
simplify smt)”.) The results are presented in Table 3 and Fig. 6.

When comparing yices2-baseline to yices2-new, it is evident that the lat-
ter is hugely improved, especially on the QF_NIA benchmarks. yices2-new can
now solve a much larger number of benchmarks in less time than yices2-baseline.
In comparison to other non-portfolio SMT solvers, yices2-new excels in perfor-
mance on the QF_NRA benchmarks. While slightly behind z3 (both versions)
on the QF_NIA benchmarks, yices2-new outperforms the other solvers. We
believe that by exploring other heuristics in Yices2 MCSat, as well as sequential
portfolio techniques, the gap between z3 and yices-new can be further reduced.

5 Conclusion

In this work, we have demonstrated the importance of decision heuristics in
the MCSat search procedure. Our empirical results have shown that dynamic
variable ordering is crucial for having a performant MCSat solver. Additionally,
we have shown that value caching is also vital for the performance of an MCSat
solver based on our experiments.

We introduced a theory-guided hinting mechanism that enhances the vari-
able selection and improves value selection techniques through the combination
of value and target caches with recaching. Our evaluation indicates that theory-
guided hinting provides the most significant performance boost, followed by tar-
get caches with recaching, and then Boolean scaling. With these new heuristics
integrated, Yices2 is now more efficient and solves more benchmarks than other
state-of-the-art solvers.

Our work is inspired by the recent advancements in propositional SAT solv-
ing. The positive results of our work suggest the potential for applying well-
established SAT heuristics in the MCSat context.

In the future, we would like to conduct a more comprehensive empirical eval-
uation by including additional theory benchmarks. Moreover, we would explore
other SAT heuristics like the VMTF decision heuristic, chronological backtrack-
ing, dynamic restart and clause database cleaning strategies based on the literal
block distance (LBD) concept.

Acknowledgments. The authors thank Mathias Fleury for interesting insights into
SAT solving techniques as well as Laura Kovács and Daniela Kaufmann for valuable
feedback. We acknowledge funding from ERC Consolidator Grant ARTIST 101002685,
the TU Wien SecInt Doctoral College, the NSF award CCRI-2016597, and from SRI
Internal Research And Development funds. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the US Government or NSF.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Decision Heuristics in MCSat 13

References

1. Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consis-
tency of non-linear real arithmetic constraints with a conflict driven search using
cylindrical algebraic coverings. J. Log. Algebraic Methods Program. 119, 100633
(2021)

2. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength SMT solver. In: TACAS (1). Lecture Notes in Computer Science, vol.
13243, pp. 415–442. Springer (2022)

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

4. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Sat-
isfiability - Second Edition, Frontiers in Artificial Intelligence and Applications,
vol. 336, pp. 1267–1329. IOS Press (2021). https://doi.org/10.3233/FAIA201017,
https://doi.org/10.3233/FAIA201017

5. Biere, A., Faller, T., Fazekas, K., Fleury, M., Froleyks, N., Pollitt, F.: CaDiCaL
2.0. In: International Conference on Computer Aided Verification. pp. 133–152.
Springer (2024)

6. Biere, A., Fleury, M.: Chasing target phases. In: Workshop on the Pragmatics of
SAT (2020)

7. Biere, A., Fleury, M., Froleyks, N., Heule, M.J.: The SAT museum. In: POS@ SAT.
pp. 72–87 (2023)

8. Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Theory and
Applications of Satisfiability Testing–SAT 2015: 18th International Conference,
Austin, TX, USA, September 24-27, 2015, Proceedings 18. pp. 405–422. Springer
(2015)

9. Bjørner, N.S., Nachmanson, L.: Arithmetic solving in Z3. In: CAV (1). Lecture
Notes in Computer Science, vol. 14681, pp. 26–41. Springer (2024)

10. Cai, S., Zhang, X., Fleury, M., Biere, A.: Better decision heuristics in cdcl through
local search and target phases. Journal of Artificial Intelligence Research 74, 1515–
1563 (2022)

11. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Experimenting on
solving nonlinear integer arithmetic with incremental linearization. In: SAT. Lec-
ture Notes in Computer Science, vol. 10929, pp. 383–398. Springer (2018)

12. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-
earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Trans. Comput. Log. 19(3), 19:1–19:52 (2018)

13. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: TACAS. Lecture Notes in Computer Science, vol. 7795, pp. 93–107.
Springer (2013)

14. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an
open source C++ toolbox for strategic and parallel SMT solving. In: SAT. Lecture
Notes in Computer Science, vol. 9340, pp. 360–368. Springer (2015)

15. Dutertre, B.: Yices 2.2. In: CAV. Lecture Notes in Computer Science, vol. 8559,
pp. 737–744. Springer (2014)

16. Dutertre, B.: An empirical evaluation of SAT solvers on bit-vector problems. In:
SMT. CEUR Workshop Proceedings, vol. 2854, pp. 15–25. CEUR-WS.org (2020)

https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017

14 T. Hader et al.

17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: International conference on
theory and applications of satisfiability testing. pp. 502–518. Springer (2003)

18. Fazekas, K., Niemetz, A., Preiner, M., Kirchweger, M., Szeider, S., Biere, A.: Sat-
isfiability modulo user propagators. J. Artif. Intell. Res. 81, 989–1017 (2024).
https://doi.org/10.1613/JAIR.1.16163, https://doi.org/10.1613/jair.1.16163

19. Graham-Lengrand, S., Jovanovic, D., Dutertre, B.: Solving bitvectors with MC-
SAT: explanations from bits and pieces. In: Peltier, N., Sofronie-Stokkermans, V.
(eds.) Intl. Joint Conf. on Automated Reasoning (IJCAR), Part I. LNCS, vol.
12166, pp. 103–121. Springer (2020). https://doi.org/10.1007/978-3-030-51074-9_
7, https://doi.org/10.1007/978-3-030-51074-9_7

20. Hader, T., Kaufmann, D., Irfan, A., Graham-Lengrand, S., Kovács, L.: MCSat-
based finite field reasoning in the yices2 SMT solver (short paper). In: IJCAR (1).
Lecture Notes in Computer Science, vol. 14739, pp. 386–395. Springer (2024)

21. Irfan, A., Graham-Lengrand, S.: Arrays reasoning in MCSat. In: SMT@CAV.
CEUR Workshop Proceedings, vol. 3725, pp. 24–35. CEUR-WS.org (2024)

22. Jovanovic, D.: Solving nonlinear integer arithmetic with MCSAT. In: VMCAI.
Lecture Notes in Computer Science, vol. 10145, pp. 330–346. Springer (2017)

23. Jovanovic, D., Barrett, C., de Moura, L.: The design and implementation of the
model constructing satisfiability calculus. In: Intl. Conf on Formal Methods in
Computer-Aided Design (FMCAD). pp. 173–180. IEEE (2013). https://doi.org/
10.1109/FMCAD.2013.7027033

24. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Theory and Applications of Satisfiability Testing–SAT
2016: 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings
19. pp. 123–140. Springer (2016)

25. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: Proceedings of the 38th annual Design Automation
Conference. pp. 530–535 (2001)

26. de Moura, L., Jovanovic, D.: A model-constructing satisfiability calculus. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) Intl. Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 7737,
pp. 1–12. Springer (2013). https://doi.org/10.1007/978-3-642-35873-9_1, https:
//doi.org/10.1007/978-3-642-35873-9_1

27. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: TACAS. Lecture
Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008)

28. de Moura, L.M., Bjørner, N.S.: Satisfiability modulo theories: introduction and
applications. Commun. ACM 54(9), 69–77 (2011)

29. Nalbach, J., Kremer, G., Ábrahám, E.: On variable orderings in MCSAT for non-
linear real arithmetic. In: SC-square@ SIAM AG (2019)

30. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL
modulo theories. In: Baader, F., Voronkov, A. (eds.) Intl. Conf. on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR). LNCS, vol. 3452,
pp. 36–50. Springer (2004). https://doi.org/10.1007/978-3-540-32275-7_3, https:
//doi.org/10.1007/978-3-540-32275-7_3

31. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Theory and Applications of Satisfiability Testing–SAT 2007:
10th International Conference, Lisbon, Portugal, May 28-31, 2007. Proceedings 10.
pp. 294–299. Springer (2007)

32. Preiner, M., Schurr, H.J., Barrett, C., Fontaine, P., Niemetz, A., Tinelli, C.: SMT-
LIB release 2024 (non-incremental benchmarks) (Apr 2024). https://doi.org/10.
5281/zenodo.11061097, https://doi.org/10.5281/zenodo.11061097

https://doi.org/10.1613/JAIR.1.16163
https://doi.org/10.1613/JAIR.1.16163
https://doi.org/10.1613/jair.1.16163
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1109/FMCAD.2013.7027033
https://doi.org/10.1109/FMCAD.2013.7027033
https://doi.org/10.1109/FMCAD.2013.7027033
https://doi.org/10.1109/FMCAD.2013.7027033
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-540-32275-7_3
https://doi.org/10.1007/978-3-540-32275-7_3
https://doi.org/10.1007/978-3-540-32275-7_3
https://doi.org/10.1007/978-3-540-32275-7_3
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.5281/zenodo.11061097

Decision Heuristics in MCSat 15

33. Reynolds, A., Tinelli, C., Jovanovic, D., Barrett, C.W.: Designing theory solvers
with extensions. In: FroCoS. Lecture Notes in Computer Science, vol. 10483, pp.
22–40. Springer (2017)

34. Ryan, L.: Efficient algorithms for clause-learning SAT solvers (2004)

	Decision Heuristics in MCSat

