
Available

CAV
Evaluation

Artifact

The MoXI Model Exchange Tool Suite⋆

Chris Johannsen1, Karthik Nukala2, Rohit Dureja3, Ahmed Irfan2, Natarajan
Shankar2, Cesare Tinelli4, Moshe Y. Vardi5, Kristin Yvonne Rozier1

1 Iowa State University {cgjohann, kyrozier}@iastate.edu
2 SRI International

{karthik.nukala, ahmed.irfan, natarajan.shankar}@sri.com
3 Advanced Micro Devices, Inc. (rohit.dureja@amd.com)

4 The University of Iowa (cesare-tinelli@uiowa.edu)
5 Rice University (vardi@cs.rice.edu)

Abstract. We release the first tool suite implementing MoXI (Model
eXchange Interlingua), an intermediate language for symbolic model
checking designed to be an international research-community standard
and developed by a widespread collaboration under a National Science
Foundation (NSF) CISE Community Research Infrastructure initiative.
Although we focus here on hardware verification, the MoXI language is
useful for software model checking and verification of infinite-state sys-
tems in general. MoXI builds on elements of SMT-LIB 2; it is easy to
add new theories and operators. Our contributions include: (1) introduc-
ing the first tool suite of automated translators into and out of the new
model-checking intermediate language; (2) composing an initial example
benchmark set enabling the model-checking research community to build
future translations; (3) compiling details for utilizing, extending, and im-
proving upon our tool suite, including usage characteristics and initial
performance data. Experimental evaluations demonstrate that compiling
SMV-language models through MoXI to perform symbolic model check-
ing with the tools from the last Hardware Model Checking Competition
performs competitively with model checking directly via nuXmv.

1 Overview

As model checking becomes more integrated into the standard design and ver-
ification process for safety-critical systems, the platforms for model-checking
research have become more limited (e.g., for the SMV language [47], neither
CadenceSMV [46] nor NuSMV [24] are actively maintained; only closed source
nuXmv [15] remains). Continuing advances in the field require utilizing higher-
level languages that offer sufficient expressive power to describe modern, com-
plex systems and enable validation by industrial system designers. At the same
time, contributing advances to back-end model-checking algorithms requires the
ability to compare across the full range of state-of-the-art algorithms without
regard for which open- or closed-source model checkers implement them or what
input languages those tools accept. Comparing new advances in model-checking
algorithms to state-of-the-art algorithms requires re-implementing entire model
⋆ This work was funded by NSF:CCRI Awards #2016592, #2016597, and #2016656.

https://zenodo.org/doi/10.5281/zenodo.10946778

2 C. Johannsen et al.

checkers, e.g., [30]. We need a sustainable tool flow that can model the system in
the most domain-appropriate high-level modeling language, analyze it with the
full range of state-of-the-art model-checking algorithms, and return counterex-
amples or certificates in the original modeling language.

Our tool suite represents an initial step in unifying model-checking research
platforms. We seed an extensible framework designed around a model-checking
intermediate language, MoXI (Model eXchange Interlingua). MoXI aims to
serve as a common language for the international research community that can
connect popular front-end modeling languages with the state of the art in back-
end model-checking algorithms. Our vision is that MoXI will enable researchers
to model-check a new or extended modeling language simply by writing trans-
lators to and from MoXI. Similarly, developing a new backend model-checking
algorithm will only require writing a translator to and from MoXI to enable com-
parisons with existing algorithms and evaluations on every benchmark model,
regardless of its original modeling language.

Our initial tool suite accepts models in the higher-level language SMV [47]
and efficiently interfaces with the back-end model checkers that competed in the
last Hardware Model Checking Competition (HWMCC) [13]. We choose SMV
because it is a popular, expressive modeling language successfully used in a wide
range of industrial verification efforts [14,17,23,29,30,33,34,36,42,45,48,49,54,
61,63–65]. SMV is important because, uniquely from other model-checking input
languages, it includes high-level constructs critically required for modeling and
validating safety-critical systems, such as many aerospace operational systems
from Boeing’s Wheel Braking System [14] to NASA’s Automated Airspace Con-
cept [34, 45, 64, 65] to a variety of Unmanned Aerial Systems [55, 59]. SMV has
been used extensively by the hardware model-checking community as well (e.g.,
at FMCAD [38]) and has appealing qualities that could further the integration
of formal methods with the embedded-systems community. Two freely available
model checkers, CadenceSMV [46] and NuSMV [24] (which is integrated into
today’s nuXmv [52]), previously provided viable research platforms. However,
today, CadenceSMV’s 32-bit pre-compiled binary and nuXmv’s closed-source
releases are no longer suitable for research, e.g., into improved model-checking
algorithms. We provide accessibility to continue the progression of high-level lan-
guage model checking in SMV via an open-source research platform that allows
the use of new algorithms under the hood.

Pushing the state of the art are several open-source, award-winning model-
checking tools, including AVR [35], Pono [44], BtorMC [51], and ABC [18].
These tools support a hardware-oriented bit-level input language like Aiger
or a bit-precise, word-level format like Btor2. Unfortunately, such languages
do not enable the direct modeling of modern complex systems as SMV does,
hindering validation efforts. For instance, it is challenging to convince industrial
system designers that Aiger models correctly capture their higher-level systems.
Perhaps driven by HWMCC, most systems for translating from high-level mod-
els to Aiger currently focus on hardware designs, without providing a natural
way to describe other computational systems, e.g., embedded systems. Also, the

The MoXI Model Exchange Tool Suite 3

problem of translating counterexamples produced by low-level model-checking
algorithms back into meaningful counterexamples for a non-hardware-centric
higher-level language model, such as one in SMV, remains a challenge.

Section 2 provides a basic introduction to MoXI, sufficient to enable under-
standing of the tool suite functionality; a description of the full language and its
semantics appears in [57, 58]. Section 3 details the extensible research and veri-
fication suite of tools, including translators between the languages SMV, MoXI
(in concrete and JSON dialects), and Btor2; utilities for validation; and a full
model-checking implementation. Here, we provide a detailed example of behav-
iorally equivalent models in SMV, MoXI, and Btor2. Our efforts to validate
their correctness appear in Section 4. Section 5 demonstrates the efficiency of
model checking SMV-language models with a tool portfolio including nuXmv
and via translation through MoXI, which performs better than checking with
nuXmv alone. The tool6 and all of the benchmarks7 used in this experiment are
available online for others to utilize in building additional translators to extend
our tool suite and the use of MoXI as an intermediate language for symbolic
model checking. Section 6 concludes with a discussion of future work.

2 Intermediate Language

MoXI (detailed in [57]) is an intermediate language designed to serve as a com-
mon input and output standard for model checkers for finite- and infinite-state
systems. It is general enough to encode high-level modeling languages like SMV
yet simple enough to enable efficient model checking, including through low-level
languages such as Btor2 or SAT/SMT-based engines. Key features include a
simple and easily parsable syntax, a rich set of data types, minimal syntactic
sugar (at least for now), well-understood formal semantics, and a small but
comprehensive set of commands.

MoXI maximizes machine-readability. Therefore, it does not support several
human-interface features found in high-level languages such as SMV, TLA+ [43],
PROMELA [37], Simulink [27], SCADE [28], and Lustre [19]; nor does it directly
support the full features of hardware modeling languages such as VHDL [40],
or Verilog [39]. However, many models and queries expressed in these languages
can be reduced to MoXI representations. MoXI development was directly in-
formed by previous intermediate formats for formal verification, their successful
applications, and their limitations. The eventual form of MoXI stems from a
combination of previous work as well as direct conversations with model checking
and SMT researchers, including the developers of Aiger [2–4], Btor2 [51], Kind
2 [22], NuSMV [21], nuXmv [16, 20], SAL/SALLY [9,32,50], VMT [26,41], and
SMT-LIB (the standard I/O language for SMT solvers) [6,7]. MoXI also bene-
fited from the feedback from a technical advisor board of prominent researchers
and practitioners in academia and industry [58].

6 https://github.com/ModelChecker/moxi-mc-flow
7 https://modelchecker.github.io/benchmarks

https://github.com/ModelChecker/moxi-mc-flow
https://modelchecker.github.io/benchmarks

4 C. Johannsen et al.

MoXI’s base logic is the same as that of SMT-LIB Version 2: many-sorted
first-order logic with equality, quantifiers, let binders, and algebraic datatypes.
MoXI extends this logic to (first-order) temporal logic while adopting a dis-
crete and linear notion of time with standard finite and infinite trace-based
semantics. MoXI also extends the SMT-LIB language with new commands for
defining and verifying multi-component reactive systems. For the latter, it fo-
cuses on the specification and checking of reachability conditions (or, indirectly,
state and transition invariants) and deadlocks, possibly under fairness condi-
tions on system inputs. Each system definition command defines a transition
system by specifying an initial state condition, a transition relation, and sys-
tem invariants. These are provided as SMT formulas, with minimal syntactic
restrictions, for flexibility and future extensibility. Each defined system is pa-
rameterized by a state signature, provided as a sequence of typed variables, and
can be expressed as the synchronous composition of other systems.8 The sig-
nature partitions state variables into input, output, and local variables. Each
system verification command expresses one or more reachability queries over
a previously defined system. The queries can be conditional on environmental
assumptions on the system’s inputs and fairness conditions on its executions.
Together with the ability to write observer systems, this allows the expression of
arbitrary LTL specifications via standard encodings [56]. Responses to a system
verification command can contain (finite or lasso) witness traces for reachable
properties or proof certificates for unreachable ones.

Figure 1 contains an example (adapted from [5]) of a three-bit counter and
its modular definition in MoXI, together with a reachability query and a sam-
ple response to the query. Figure 2 contains an extension of that model with
an observer system and a query for checking the observational equivalence of
the three-bit counter with a bit-vector counter of matching width. The vari-
ous components of each system definition or check command are provided as
attribute-value pairs, following the syntax of SMT-LIB annotations. Transition
predicates use primed variables to denote next-state values.

3 Tool Suite

We provide a suite of tools for translating into and out of MoXI and validating
MoXI scripts. The tools are implemented in type-annotated Python with a focus
on finite-state systems (for now). Figure 3 illustrates the end-to-end toolchain for
model checking using MoXI, including relationships between the various tools.

3.1 Translators

The tool suite provides four translators that take as input a model, query, or
witness specified in a source language and output a behaviorally equivalent model,
query, or witness in the configured target language.

8 We plan to include asynchronous composition in a later release.

The MoXI Model Exchange Tool Suite 5

1 (define-system Latch :input ((set Bool) (reset Bool))
2 :output ((out Bool))
3 :init (not out)
4 :trans ((= out ’ (or (and set (not reset))
5 (and (not reset) out))))
6)
7 (define-system OneBitCounter :input ((inc Bool))
8 :output ((out Bool) (carry Bool)) :local ((set Bool))
9 :subsys (L (Latch set carry out))

10 :inv (and (= set (and inc (not carry)))
11 (= carry (and inc out)))
12)
13 (define-system ThreeBitCounter :input ((inc Bool))
14 :output ((out0 Bool) (out1 Bool) (out2 Bool))
15 :local ((car0 Bool) (car1 Bool) (car2 Bool))
16 :init (and (not out0) (not out1) (not out2))
17 :subsys (C1 (OneBitCounter inc out0 car0))
18 :subsys (C2 (OneBitCounter car0 out1 car1))
19 :subsys (C3 (OneBitCounter car1 out2 car2))
20)
21 (check-system ThreeBitCounter :input ((inc Bool))
22 :output ((out0 Bool) (out1 Bool) (out2 Bool))
23 :local ((car0 Bool) (car1 Bool) (car2 Bool))
24 :reachable (r (and (not out0) out1 (not out2)))
25 :query (query1 (r))
26)

1 (check-system-response ThreeBitCounter
2 :query (query1 :result sat :trace query1_trace)
3 :trace (query1_trace :prefix query1_trail)
4 :trail (query1_trail
5 (0 (out0 0) (out1 0) (out2 0) (inc 1) (car0 0) (car1 0) (car2 0))
6 (1 (out0 1) (out1 0) (out2 0) (inc 1) (car0 1) (car1 0) (car2 0))
7 (2 (out0 0) (out1 1) (out2 0) (inc 1) (car0 0) (car1 0) (car2 0))
8))

Fig. 1: (Top) The three-bit counter circuit composes three one-bit counters together,
where each counter uses a latch to store that counter’s current value. (Middle) A MoXI
implementation of the circuit uses define-system (lines 1-20) to describe and compose
each counter component. It then queries (lines 21-26) whether the counter can output 2.
(Bottom) A possible query response provides a trace showing that the counter outputs
2 within 3 execution steps. We write Bool values as integers here for compactness.

6 C. Johannsen et al.

27 (set-logic QF_BV)
28 (define-system BitVecCounter :input ((inc Bool))
29 :output ((out (_ BitVec 3)))
30 :init (= out #b000)
31 :trans (= out ’ (ite inc (bvadd out #b001) out))
32)
33 (define-system Monitor
34 :local ((inc Bool) (out_bit (_ BitVec 3)) (out_bv (_ BitVec 3))
35 (bit0 Bool) (bit1 Bool) (bit2 Bool))
36 :subsys (C1 (ThreeBitCounter inc bit0 bit1 bit2))
37 :subsys (C2 (BitVecCounter inc out_bv))
38 :inv (= out_bit (to_bv3 bit0 bit1 bit2))
39)
40 (check-system Monitor
41 :local ((inc Bool) (out_bit (_ BitVec 3)) (out_bv (_ BitVec 3))
42 (bit0 Bool) (bit1 Bool) (bit2 Bool))
43 :reachable (reach1 (distinct out_bit out_bv))
44 :query (query1 (reach1))
45)

1 (check-system-response Monitor
2 :query (query1 :result unsat)
3)

Fig. 2: (Top) Extending the MoXI model shown in Figure 1, a Monitor (lines 33-40)
computes the output for a ThreeBitCounter and a bit-vector-based counter (lines 28-
32). The function to_bv3 (definition is omitted for space constraints) converts bit values
to the corresponding bit-vector value. The check-system command (lines 40-45) queries
whether their outputs can possibly differ. (Bottom) The check-system-response re-
ports an unsatisfiable query, proving the two counters equivalent.

Fig. 3: Starting with a nuXmv model, smv2moxi generates a behaviorally equivalent
MoXI model in either the MoXI concrete syntax or a JSON dialect syntax. moxi2btor
translates this MoXI model to a set of Btor2 models, one for each query, which an
off-the-shelf model checker (e.g., AVR [35], Pono [44], BtorMC [51]) solves. Then,
btorwit2moxiwit creates a MoXI witness from the Btor2 witness using the Btor2
model to map variable names properly, and similarly for moxiwit2smvwit. The sort
checker validates MoXI input against any of the SMT-LIB logics listed in Section 3.2.
The validator checks JSON dialect input against our provided schema.

(1) smv2moxi translates specifications written in (a common subset of) the
SMV language into MoXI. Broadly, this tool supports Finite State Machine
(FSM) definitions (nuXmv manual, Section 2.3 [16]). It currently supports only
statically typed expressions; for example, all module instantiations of the same

The MoXI Model Exchange Tool Suite 7

defined module must share the same signature. (For a module M with parameters
p1 and p2, the types of p1, p2 must be the same across all instantiations of M.)
Figure 4 shows that the translation preserves the hierarchy between the SMV
modules and submodule instantiations.

The MoXI encoding captures SMV macro and function declarations (DEFINE,
FUN), variable declarations (VAR, IVAR, FROZENVAR), state machine declarations
(INIT, TRANS, INVAR, ASSIGN), invariant specifications (AG [property], INVARSPEC)
and fairness constraints (FAIRNESS, JUSTICE, COMPASSION). To support LTL
specifications (LTLSPEC), smv2moxi runs PANDA [56], an open-source tool offer-
ing a portfolio of LTL-to-symbolic automaton translations in SMV format.

The smv2moxi tool consists of (1) preprocessing that renames identifiers de-
viating from the SMV grammar (discussed in Section 4); (2) running the C
preprocessor (SMV supports C-style macros) and PANDA [56] (for LTL speci-
fications); (3) parsing via a SLY-generated [8] parser; (4) running an SMV type
checker; (5) translating to MoXI. We emphasize that tool guarantees apply to
well-formed SMV models as determined by nuXmv.

(2) moxi2btor translates MoXI to Btor2 by creating a Btor2 file for each
:query attribute in each check-system command. Some crucial differences be-
tween MoXI and Btor2 present non-trivial challenges. Firstly, Btor2 does
not support hierarchical models. moxi2btor flattens the system hierarchy in
its translation as a result. Secondly, MoXI allows for declarative-style initial,
transition, and invariant conditions while Btor2 allows only assignment-style.
Figure 4 shows how moxi2btor encodes each system’s conditions using three
variants of each variable. Thirdly, a MoXI query with multiple reachability
properties asks for a trace that eventually satisfies each property. In Btor2,
multiple bad properties in a file ask for a trace that eventually satisfies at least
one such property. Figure 4 again shows how the translation resolves this differ-
ence. The moxi2btor tool’s workflow consists of (1) parsing via a SLY-generated
parser [8]; (2) running sortcheck (Section 3.2); (3) translating to a set of Btor2
files, each behaviorally equivalent to its corresponding :query.

(3) btorwit2moxiwit translates Btor2 witnesses to MoXI witnesses using
the check-system-response syntax. It assumes moxi2btor created the Btor2
input files used to generate the witness and uses information that moxi2btor
encodes in the comments of each Btor2 file, e.g., to map bit vectors to enumer-
ation values for variables of such sorts.

(4) moxiwit2smvwit translates MoXI witnesses to SMV-language witnesses.

3.2 Utilities

sortcheck We provide a sort-checker for MoXI that supports the following
SMT-LIB logics: QF_BV, QF_ABV, QF_LIA, QF_NIA, QF_LRA, and QF_NRA.

validate We define a JSON Schema for MoXI and support a JSON dialect
for MoXI in our tools. Given the evolving nature of new languages and their
standards, tool writers often pay an unnecessary overhead keeping front-end tools

8 C. Johannsen et al.

SMV

MODULE Delay(i,o)
INIT

(o = 0ud8_0);
TRANS

(next(o) = i);

MODULE main
IVAR
i: unsigned

word [8];
VAR
o: unsigned

word [8];
D: Delay(i,o);

INVARSPEC
! (o = 0ud8_2);

MoXI
(set-logic QF_BV)
(define-system Delay

:input ((i (_ BitVec 8))
(o (_ BitVec 8)))

:init (= o #x00)
:trans (= o’ i)

)
(define-system main

:input ((i (_ BitVec 8)))
:output ((o (_ BitVec 8)))
:local ((D.i (_ BitVec 8))

(D.o (_ BitVec 8)))
:inv (and

(= D.i i) (= D.o o))
:subsys

(D (Delay D.i D.o))
)
(check-system main

:input ((i (_ BitVec 8)))
:output ((o (_ BitVec 8)))
:local ((D.i (_ BitVec 8))

(D.o (_ BitVec 8)))
:reachable (rch

(not (not (= o #x02))))
:query (qry_rch (rch))

)

BTOR2
1 sort bitvec 8
2 sort bitvec 1
3 state 1 D.o.init
4 state 1 D.o.cur
5 state 1 D.o.next
6 state 1 D.i.cur
7 state 1 o.cur
8 state 1 i.cur
9 init 1 4 3
10 next 1 4 5
11 constd 1 0
12 eq 2 3 11
13 constraint 12
14 eq 2 5 6
15 constraint 14
16 constd 2 1
17 constraint 16
18 eq 2 4 7
19 eq 2 6 8
20 and 2 19 18
21 constraint 20
22 constd 2 0
23 constd 1 2
24 eq 2 7 23
25 not 2 24
26 not 2 25
27 state 2 F_rch
28 init 2 27 22
29 ite 2 27 16 26
30 next 2 27 29
31 bad 27

Fig. 4: The toolchain translates the SMV model for a delay circuit on the left to the
MoXI model in the center by creating a define-system command for each MODULE.
It then generates the Btor2 model on the right, introducing three variants of each
check-system variable (.init, .cur, .next) and setting constraints such as the :init
and :next of Delay on lines 13 and 15 respectively. The Btor2 “flag” variable F_rch
(line 27) encodes if formula rch has been true at least once during the execution; the
presence of multiple Btor2 bad properties asks for a trace where at least one such
property is eventually true, we conjunct the flag variables to ask for a trace where
every property is eventually true.

up to date. By supporting the representation of MoXI constructs in the JSON
dialect, we expect to facilitate tool development, improve tool interoperability,
and ensure conformance to the language standard. Tool writers can use off-the-
shelf JSON parsers (e.g., simdjson, RapidJSON) to obtain industrial-strength
MoXI parsers in the language they choose “for free.” We plan to include a
JSON schema for each MoXI release, enabling seamless front-end compatibility
with the latest MoXI standard along with language/platform independence. The
validate utility invokes a JSON validator from Python’s jsonschema package to
validate a MoXI script (in the JSON dialect) against the MoXI JSON schema.

4 Tool Suite Validation

We validate our tools using a combination of manual inspection, sort check-
ing of translated output, and comparing witnesses between those generated by

The MoXI Model Exchange Tool Suite 9

SMV
Trace Description:

nuxmv2btor
counterexample

Trace Type:
Counterexample
-> State: 1.1 <-

D.i = 0ud8_2
D.o = 0ud8_0
o = 0ud8_0

-> Input: 1.2 <-
i = 0ud8_0

-> State: 1.2 <-
D.i = 0ud8_0
D.o = 0ud8_2
o = 0ud8_2

MoXI
(check-system-response main

:query (qry_rch
:result sat
:trace qry_rch_trace

)
:trace (qry_rch_trace

:prefix qry_rch_trail
)
:trail (qry_rch_trail

(0 (D.i #b00000010)
(D.o #b00000000)
(o #b00000000)
(i #b00000010))

(1 (D.i #b00000000)
(D.o #b00000010)
(o #b00000010)
(i #b00000000))

))

BTOR2
sat b0 #0
0 00000000 D.o.init
1 00000000 D.o.cur
2 00000010 D.o.next
3 00000010 D.i.cur
4 00000000 o.cur
5 00000010 i.cur
6 0 F_rch
#1
1 00000010 D.o.cur
2 00000000 D.o.next
3 00000000 D.i.cur
4 00000010 o.cur
5 00000000 i.cur
#2
1 00000000 D.o.cur
4 00000000 o.cur
6 1 F_rch

Fig. 5: The witness translation after model checking the Btor2 file in Figure 4 works
right to left: it maps each Btor2 .cur variable to its MoXI counterpart and discards
the last frame of the witness due to the delay caused by using flag variables. Similarly,
it maps each MoXI variable to its SMV counterpart.

nuXmv and our end-to-end tool suite. We use catbtor [51] for sort checking
and BtorMC, AVR, and Pono for bounded model checking (BMC) of Btor2
files. For benchmark generation, we use the set of nuXmv input files provided
in the most recent release of nuXmv.

Manual Inspection. We provide an initial set of hand-written MoXI bench-
marks to perform manual validation. Each benchmark is well-sorted accord-
ing to sortcheck, generates well-sorted Btor2 via moxi2btor according to
catbtor, and generates correct, manually-inspected witnesses via BtorMC
and btorwit2moxiwit.9

Sort Checked Translations. Using the benchmarks distributed with nuXmv as
input, we check that the output of smv2moxi and moxi2btor are well-sorted ac-
cording to sortcheck and catbtor. We discovered discrepancies in benchmarks
distributed with nuXmv while developing these utilities, where the benchmarks
did not conform to the grammar defined in Chapter 2 of the nuXmv User Man-
ual [16] but were accepted by nuXmv nonetheless, particularly concerning iden-
tifiers. The preprocessor of smv2moxi transforms these identifiers into valid ones.
There were also numerous ill-typed benchmarks that smv2moxi’s type checker
correctly rejects.

Output Comparison. Using the nuXmv benchmarks again as input, we run
nuXmv and our tool suite to generate witnesses for each specification. Both
nuXmv and our tool suite agree on the result of every model-checking query.
Section 5 describes how our toolchain (using BtorMC, AVR, or Pono as its
back end) shows a similar number of timeouts compared with nuXmv when the
latter is set to use BMC or k-induction.
9 Many thanks to Daniel Larraz for writing many of the MoXI examples.

10 C. Johannsen et al.

5 Benchmarks

We provide an initial set of MoXI benchmarks for the model-checking com-
munity generated from the set of SMV input files provided in the most recent
release of nuXmv. Noting that many of the SMV benchmarks are results of a
Btor2 to nuXmv translation themselves, we stress that this set of benchmarks
is intended to be an initial set. We expect to achieve greater benchmark diver-
sity with continued toolchain development and increased adoption of MoXI by
other researchers.

Experimental Evaluation. We compare the end-to-end performance of model-
checking SMV-language models with a portfolio comprising nuXmv and Btor2
model checkers: AVR, Pono, and BtorMC, on a set of 960 QF_ABV-compatible
SMV benchmarks, i.e., SMV models with boolean, word or array types. We use
the HWMCC 2020 versions of AVR and Pono, the version of BtorMC from the
latest version of Boolector [51], and the latest public release of nuXmv (version
2.0.0). Each checker is configured with a 1-hour time limit and 8GB memory
limit and runs BMC [12] and k-induction [60] with a max bound of 1000. (We
do not run BtorMC with k-induction due to a bug in its implementation.)

Figure 6 shows our evaluation, with portfolio performance depicted as virtual-
best (vb). While we consider this a proof-of-concept evaluation, we observe that
SMV-language model checking using Btor2 model checkers, enabled via a trans-
lation through MoXI, delivers superior performance on unsafe queries compared
to model checking with nuXmv alone: vb-bmc solves 57% more benchmarks
than nuXmv-bmc while ensuring all Btor2 witnesses are correctly translated
to SMV traces. We measure competitive performance with vb-kind solving 6%
more benchmarks than nuXmv-kind for safe queries. The vb performance gains
are due to its ability to use a variety of model checkers with different SMT
solver backends of varying strengths, e.g., nuXmv uses MathSAT [25], AVR
uses Yices [31], and Pono uses Boolector [51], while ensuring correct model
and witness translation through MoXI. Section 4 of Rozier et al. [57] includes
experimental data using each tool’s IC3-based algorithms.

6 Conclusion and Future Work

The presented tool suite provides the foundational step in developing an open-
source, state-of-the-art symbolic model-checking framework for the research com-
munity. It constitutes the first tool support for the new intermediate language
MoXI, the first experimental evidence of the potential for efficient translation
through MoXI, and a basis upon which the hardware and software model-
checking communities can build. Adding support for checking models in a high-
level modeling language is now as easy as adding a translator between that
language and MoXI to this tool suite. Similarly, experimenting with a novel
back-end model-checking algorithm to check all supported input modeling lan-
guages only requires writing a new MoXI translator interfacing with that algo-

The MoXI Model Exchange Tool Suite 11

0

100

200

300
#

U
ns

af
e

So
lv

ed

AVR-bmc Pono-bmc BtorMC-bmc
nuXmv-bmc vb-bmc

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0

50

100

Wall-clock Time (s)

#
Sa

fe
So

lv
ed

AVR-kind Pono-kind
nuXmv-kind vb-kind

Fig. 6: Performance comparison on unsafe and safe queries with BMC and k-induction
across different model checkers. vb-* represents the virtual best solver. Wall-clock time
for the non-nuXmv plots includes translation time.

rithm. Benchmarking against other model-checking algorithms no longer require
re-implementing existing tools to achieve an apples-to-apples comparison.

Connecting this toolchain to existing tools enables the immediate application
of verification techniques for Btor2 to MoXI beyond just hardware model
checkers. For example, a software model checker can verify a MoXI model via
Btor2C [11], making at least 59 other backend verifiers for MoXI available [10].

This release enables future instantiations of HWMCC [13] to add compe-
tition tracks centered around MoXI, with extensions from the model-checking
research community. Specifying, proving correct, and extracting efficient C code
for our translation using a theorem prover such as PVS [53] would provide an ad-
ditional trusted translation between languages beyond the validation techniques
in Section 4. We are writing a back end to Yosys [62], the open-source RTL
synthesis framework, to generate files directly from Verilog designs and facilitate
a more extensive set of realistic benchmarks to add to the initial set in Sec-
tion 5. Additionally, once MoXI certificates are fully defined, we can translate
Btor2-Cert [1] certificates back to MoXI from Btor2-Cert-supported ver-
ifiers. Finally, we expect developers of model checkers for higher-level modeling
languages than a language like Btor2 may choose to support MoXI directly.
We have work in this direction underway for the Kind 2 checker [22].

References

1. Ádám, Z., Beyer, D., Chien, P.C., Lee, N.Z., Sirrenberg, N.: Btor2-cert: A certi-
fying hardware-verification framework using software analyzers. In: International

12 C. Johannsen et al.

Conference on Tools and Algorithms for the Construction and Analysis of Systems.
pp. 129–149. Springer (2024)

2. The AIGER and-inverter graph (AIG) format version 20071012. http://fmv.jku.
at/aiger/FORMAT, accessed: 2016-07-25

3. AIGER 1.9 and beyond. http://fmv.jku.at/hwmcc11/beyond1.pdf, accessed:
2016-07-25

4. AIGER website. http://fmv.jku.at/aiger/, accessed: 2016-07-25
5. Alur, R.: Principles of cyber-physical systems. MIT press (2015)
6. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library

(SMT-LIB), https://smt-lib.org
7. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,

A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (Edinburgh, UK) (2010)

8. Beazley, D.: Sly (sly lex yacc). https://sly.readthedocs.io/en/latest/ (2018)
9. Bensalem, S., Ganesh, V., Lakhnech, Y., noz, C.M., Owre, S., Rueß, H., Rushby, J.,

Rusu, V., Saïdi, H., Shankar, N., Singerman, E., Tiwari, A.: An overview of SAL.
In: Holloway, C.M. (ed.) LFM 2000: Fifth NASA Langley Formal Methods Work-
shop. pp. 187–196. NASA Langley Research Center, Hampton, VA (Jun 2000),
http://www.csl.sri.com/papers/lfm2000/

10. Beyer, D.: State of the art in software verification and witness validation: Sv-comp
2024. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. pp. 299–329. Springer (2024)

11. Beyer, D., Chien, P.C., Lee, N.Z.: Bridging hardware and software analysis with
btor2c: A word-level-circuit-to-c translator. In: International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. pp. 152–172.
Springer (2023)

12. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking Without
BDDs. In: Proceedings of the 5th International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems. pp. 193–207. TACAS, Springer-
Verlag, Berlin, Heidelberg (1999), http://dl.acm.org/citation.cfm?id=646483.
691738

13. Biere, A., Froleyks, N., Preiner, M.: Hardware Model Checking Competition
(HWMCC). https://fmv.jku.at/hwmcc20/index.html (2020)

14. Bozzano, M., Cimatti, A., Fernandes Pires, A., Jones, D., Kimberly, G., Petri,
T., Robinson, R., Tonetta, S.: Formal design and safety analysis of AIR6110 wheel
brake system. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV. pp. 518–535. Springer
(2015)

15. Bozzano, M., Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A.,
Micheli, A., Mover, S., Roveri, M., Tonetta, S.: nuXmv 1.0 User Manual. Tech.
rep., FBK - Via Sommarive 18, 38055 Povo (Trento) – Italy (2014)

16. Bozzano, M., Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A.,
Micheli, A., Mover, S., Roveri, M., Tonetta, S.: nuxmv 2.0. 0 user manual. Fon-
dazione Bruno Kessler, Tech. Rept., Trento, Italy (2019)

17. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: The
COMPASS approach: Correctness, Modelling, and Performability of Aerospace
Systems. In: Computer Safety, Reliability, and Security, pp. 173–186. Springer
(2009)

18. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: International Conference on Computer Aided Verification. pp. 24–40.
Springer (2010)

http://fmv.jku.at/aiger/FORMAT
http://fmv.jku.at/aiger/FORMAT
http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/aiger/
https://smt-lib.org
https://sly.readthedocs.io/en/latest/
http://www.csl.sri.com/papers/lfm2000/
http://dl.acm.org/citation.cfm?id=646483.691738
http://dl.acm.org/citation.cfm?id=646483.691738
https://fmv.jku.at/hwmcc20/index.html

The MoXI Model Exchange Tool Suite 13

19. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language
for programming synchronous systems. In: Proc. 14tj Annual ACM Symposium on
Principles of Programming Languages. pp. 178–188 (1987)

20. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) Proc. 26th Int. Conf. on Computer Aided Verification. Lecture
Notes in Computer Science, vol. 8559, pp. 334–342. Springer (2014)

21. Cavada, R., Cimatti, A., Jochim, C.A., Keighren, G., Olivetti, E., Pistore, M.,
Roveri, M., Tchaltsev, A.: Nusmv 2.6 user manual (2016)

22. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker. In:
Proc. 28th Int’l Conf. on Computer Aided Verification. Lecture Notes in Computer
Science, vol. 9780, pp. 510–517. Springer (2016)

23. Choi, Y., Heimdahl, M.: Model checking software requirement specifications using
domain reduction abstraction. In: IEEE ASE. pp. 314–317 (2003)

24. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model
checking. In: CAV, Proc. 14th Int’l Conf. pp. 359–364. LNCS 2404, Springer (2002)

25. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: TACAS. pp. 93–107 (2013)

26. Cimatti, A., Griggio, A., Tonetta, S., et al.: The vmt-lib language and tools. In: Pro-
ceedings of the 20th Internal Workshop on Satisfiability ModuloTheories co-located
with the 11th International Joint Conference onAutomated Reasoning {(IJCAR}
2022) part of the 8th Federated LogicConference (FLoC 2022), Haifa, Israel, Au-
gust 11-12, 2022. vol. 3185, pp. 80–89. CEUR-WS. org (2022)

27. Documentation, S.: Simulation and model-based design (2020), https://www.
mathworks.com/products/simulink.html

28. Documentation, SCADE: Ansys SCADE Suite (2023), https://www.ansys.com/
products/embedded-software/ansys-scade-suite

29. Dureja, R., Rozier, E.W.D., Rozier, K.Y.: A case study in safety, security, and
availability of wireless-enabled aircraft communication networks. In: Proceedings
of te 17th AIAA Aviation Technology, Integration, and Operations Conference
(AVIATION). American Institute of Aeronautics and Astronautics (June 2017).
https://doi.org/http://dx.doi.org/10.2514/6.2017-3112

30. Dureja, R., Rozier, K.Y.: FuseIC3: An algorithm for checking large design
spaces. In: Proceedings of Formal Methods in Computer-Aided Design (FMCAD).
IEEE/ACM, Vienna, Austria (October 2017)

31. Dutertre, B.: Yices 2.2. In: International Conference on Computer Aided Verifica-
tion. pp. 737–744. Springer (2014)

32. Dutertre, B., Jovanović, D., Navas, J.A.: Verification of fault-tolerant protocols
with sally. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NASA Formal Methods.
pp. 113–120. Springer International Publishing (2018)

33. Gan, X., Dubrovin, J., Heljanko, K.: A symbolic model checking approach to veri-
fying satellite onboard software. Science of Computer Programming (2013) (March
2013), http://dx.doi.org/10.1016/j.scico.2013.03.005

34. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model check-
ing at scale: Automated air traffic control design space exploration. In: Pro-
ceedings of 28th International Conference on Computer Aided Verification (CAV
2016). LNCS, vol. 9780, pp. 3–22. Springer, Toronto, ON, Canada (July 2016).
https://doi.org/10.1007/978-3-319-41540-6_1

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://doi.org/http://dx.doi.org/10.2514/6.2017-3112
http://dx.doi.org/10.1016/j.scico.2013.03.005
https://doi.org/10.1007/978-3-319-41540-6_1

14 C. Johannsen et al.

35. Goel, A., Sakallah, K.: Avr: abstractly verifying reachability. In: Tools and Algo-
rithms for the Construction and Analysis of Systems: 26th International Confer-
ence, TACAS 2020, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020, Pro-
ceedings, Part I 26. pp. 413–422. Springer (2020)

36. Gribaudo, M., Horvath, A., Bobbio, A., Tronci, E., Ciancamerla, E., Minichino,
M.: Model-checking based on fluid Petri nets for the temperature control system
of the ICARO co-generative plant. Tech. rep., SAFECOMP, 2434, LNCS (2002)

37. Holzmann, G.: Design and Validation of Computer Protocols. Prentice-Hall Int.
Editions (1991)

38. Hunt, W.: FMCAD organization home page. http://www.cs.utexas.edu/users/
hunt/FMCAD/

39. IEEE: IEEE standard for Verilog hardware description language (2005)
40. IEEE: IEEE standard for VHDL language reference manual (2019)
41. Kessler, F.B.: Verification modulo theories. https://vmt-lib.fbk.eu/, accessed:

2017-09-30
42. Lahtinen, J., Valkonen, J., Björkman, K., Frits, J., Niemelä, I., Heljanko, K.:

Model checking of safety-critical software in the nuclear engineering domain.
Reliability Engineering & System Safety 105(0), 104–113 (2012), http://www.
sciencedirect.com/science/article/pii/S0951832012000555

43. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

44. Mann, M., Irfan, A., Lonsing, F., Yang, Y., Zhang, H., Brown, K., Gupta, A., Bar-
rett, C.: Pono: a flexible and extensible SMT-based model checker. In: Computer
Aided Verification: 33rd International Conference, CAV 2021, Virtual Event, July
20–23, 2021, Proceedings, Part II 33. pp. 461–474. Springer (2021)

45. Mattarei, C., Cimatti, A., Gario, M., Tonetta, S., Rozier, K.Y.: Comparing different
functional allocations in automated air traffic control design. In: Proceedings of
Formal Methods in Computer-Aided Design (FMCAD 2015). IEEE/ACM, Austin,
Texas, U.S.A (September 2015)

46. McMillan, K.: The SMV language. Tech. rep., Cadence Berkeley Lab (1999)
47. McMillan, K.L.: Symbolic Model Checking, chap. The SMV System,

pp. 61–85. Springer US, Boston, MA (1993), https://doi.org/10.1007/
978-1-4615-3190-6_4

48. Miller, S.: Will this be formal? In: TPHOLs 5170, pp. 6–11. Springer (2008), http:
//dx.doi.org/10.1007/978-3-540-71067-7_2

49. Miller, S.P., Tribble, A.C., Whalen, M.W., Per, M., Heimdahl, E.: Proving the
shalls. STTT 8(4-5), 303–319 (2006)

50. de Moura, L., Owre, S., Shankar, N.: The SAL language manual. CSL Technical
Report SRI-CSL-01-02 (Rev. 2), SRI Int’l, 333 Ravenswood Ave., Menlo Park, CA
94025 (Aug 2003)

51. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC, and Boolector
3.0. In: Proc. 30th Int. Conf. on Computer Aided Verification. Lecture Notes in
Computer Science, vol. 10981, pp. 587–595. Springer (2018)

52. The nuXmv model checker; available at https://nuxmv.fbk.eu/, 2015
53. Owre, S., Rushby, J., Shankar, N.: Pvs: A prototype verification system. In: Proc.

11th Int’l Conf. on Automated Deduction. Lecture Notes in Computer Science,
vol. 607, pp. 748–752. Springer (1992)

54. Raimondi, F., Lomuscio, A., Sergot, M.J.: Towards model checking interpreted
systems. In: FAABS 02, LNAI 2699. pp. 115–125. Springer (2002)

http://www.cs.utexas.edu/users/hunt/FMCAD/
http://www.cs.utexas.edu/users/hunt/FMCAD/
https://vmt-lib.fbk.eu/
http://www.sciencedirect.com/science/article/pii/S0951832012000555
http://www.sciencedirect.com/science/article/pii/S0951832012000555
https://doi.org/10.1007/978-1-4615-3190-6_4
https://doi.org/10.1007/978-1-4615-3190-6_4
http://dx.doi.org/10.1007/978-3-540-71067-7_2
http://dx.doi.org/10.1007/978-3-540-71067-7_2
https://nuxmv.fbk.eu/

The MoXI Model Exchange Tool Suite 15

55. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime ob-
server pairs for system health management of real-time systems. In: Proceedings
of the 20th International Conference on Tools and Algorithms f or the Construction
and Analysis of Systems (TACAS). Lecture Notes in Computer Science (LNCS),
vol. 8413, pp. 357–372. Springer-Verlag (April 2014)

56. Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for LTL symbolic satisfia-
bility checking. In: 17th International Symposium on Formal Methods (FM2011).
Lecture Notes in Computer Science (LNCS), vol. 6664, pp. 417–431. Springer-
Verlag (2011)

57. Rozier, K.Y., Dureja, R., Irfan, A., Johannsen, C., Nukala, K., Shankar, N., Tinelli,
C., Vardi, M.Y.: Moxi: An intermediate language for symbolic model checking. In:
Proceedings of the 30th International Symposium on Model Checking Software
(SPIN). LNCS, Springer (April 2024)

58. Rozier, K.Y., Shankar, N., Tinelli, C., Vardi, M.Y.: Developing an open-source,
state-of-the-art symbolic model-checking framework for the model-checking re-
search community. Online: https://modelchecker.github.io (2019)

59. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito,
C.: Towards real-time, on-board, hardware-supported sensor and software health
management for unmanned aerial systems. In: Proceedings of the 2013 Annual
Conference of the Prognostics and Health Ma nagement Society (PHM2013). pp.
381–401 (October 2013)

60. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction
and a SAT-solver. In: Proc. 3rd Int’l Conf. on Formal Methods in Computer-Aided
Design. Lecture Notes in Computer Science, vol. 1954, pp. 108–125. Springer (2000)

61. Tribble, A., Miller, S.: Software safety analysis of a flight management system
vertical navigation function-a status report. In: DASC. pp. 1.B.1–1.1–9 v1 (2003)

62. Wolf, C.: Yosys open synthesis suite (2016)
63. Yoo, J., Jee, E., Cha, S.: Formal modeling and verification of safety-critical soft-

ware. Software, IEEE 26(3), 42–49 (2009)
64. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination

protocol for an automated air traffic control system. In: Proceedings of the 12th
International Workshop on Automated Verification of Critical Systems (AVoCS
2012). Electronic Communications of the EASST, vol. 53, pp. 337–353. European
Association of Software Science and Technology (2012)

65. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination
protocol for an automated air traffic control system. Science of Computer Pro-
gramming Journal 96(3), 337–353 (December 2014)

https://modelchecker.github.io

	 The MoXI Model Exchange Tool Suite-0.1in

