
Pono: A Flexible and Extensible
SMT-based Model Checker?

Makai Mann1 (B) , Ahmed Irfan1 , Florian Lonsing1 , Yahan Yang1,3,
Hongce Zhang2, Kristopher Brown1 , Aarti Gupta2 , and Clark Barrett1

1 Stanford University, Stanford, USA
{makaim,irfan,lonsing,barrett}@cs.stanford.edu

ksb@stanford.edu
2 Princeton University, Princeton, USA

hongcez@princeton.edu

aartig@cs.princeton.edu
3 University of Pennsylvania, Philadelphia, USA

yangy96@seas.upenn.edu

Abstract. Symbolic model checking is an important tool for finding
bugs (or proving the absence of bugs) in modern system designs. Be-
cause of this, improving the ease of use, scalability, and performance of
model checking tools and algorithms continues to be an important re-
search direction. In service of this goal, we present Pono, an open-source
SMT-based model checker. Pono is designed to be both a research plat-
form for developing and improving model checking algorithms, as well
as a performance-competitive tool that can be used for academic and
industry verification applications. In addition to performance, Pono pri-
oritizes transparency (developed as an open-source project on GitHub),
flexibility (Pono can be adapted to a variety of tasks by exploiting its
general SMT-based interface), and extensibility (it is easy to add new
algorithms and new back-end solvers). In this paper, we describe the de-
sign of the tool with a focus on the flexible and extensible architecture,
cover its current capabilities, and demonstrate that Pono is competitive
with state-of-the-art tools.

1 Introduction

Model checking [39, 61] is an influential verification capability in modern system
design. Its greatest success has been with finite-state systems, where propo-
sitional methods such as binary decision diagrams (BDDs) [28] and Boolean
satisfiability (SAT) solvers [69] are used as verification engines. At the same
time, significant efforts have been made to lift model checking techniques from
finite-state to infinite-state systems [24, 30, 31, 35, 46, 63]. This requires more
expressive verification engines, such as solvers for satisfiability modulo theories
(SMT) [19]. Proponents of SMT-based techniques argue that such techniques

? “Pono” is the Hawaiian word for proper, correct, or goodness. Our goal is that Pono
can be a useful tool for people to verify the correctness of systems.

http://orcid.org/0000-0002-1555-5784
http://orcid.org/0000-0001-7791-9021
http://orcid.org/0000-0002-5715-7231
http://orcid.org/0000-0002-9374-9138
http://orcid.org/0000-0001-6676-9400
http://orcid.org/0000-0002-9522-3084

2 M. Mann, A. Irfan, F. Lonsing, et. al.

can also benefit finite-state systems, due to their ability to leverage word-level
reasoning. Indeed, a word-level model checker won the most recent hardware
model checking competition [22], giving credence to this claim. Despite these
successes, there remain many directions for exploration in model checking. In
this paper, we present Pono, an SMT-based model checking tool, with the goal
of providing an open research platform for advancing these efforts.

Pono is designed with three use cases in mind: 1) push-button verification;
2) expert verification; and 3) model checker development. For 1, Pono provides
competitive implementations of standard model checking algorithms. For 2, it
exposes a flexible API, affording expert users fine-grained control over the tool.
This can be useful in traditional model checking tasks (e.g., manually guiding
the tool to an invariant, or adjusting the encoding for better performance), but
it also enables the tool to be easily adapted for other tasks. In addition, Pono
is designed using a completely generic SMT solver interface, making it trivial
to experiment with different back-end solvers. For 3, Pono is open-source [7]
and designed to be easily modifiable and extensible with a simple, modular,
and hierarchical architecture. Taken together, these features make it relatively
easy to do controlled experiments by comparing results obtained using Pono,
while varying only the SMT solver or the model checking algorithm. Pono has
already been used in a variety of research projects, both for model checking and
other custom applications. It has also been used in two graduate level courses at
Stanford University, where students used both the command-line interface and
the API. With this promising start, we hope it will have a long and productive
existence supporting research, education, and industry.

2 Design

Pono is designed around the manipulation and analysis of transition systems.
A symbolic transition system is a tuple 〈X, I, T 〉, where X is a set of (sorted)
uninterpreted constants referred to as the current-state variables of the system
and coupled with corresponding next-state variables X ′; I(X) is a formula con-
straining the initial states of the system; and T (X,X ′) is a formula expressing
the transition relation, which encodes the dynamics of the system. The transi-
tion system representation provides a clean and general interface, allowing Pono

to target both hardware and software model checking. Pono is designed to fully
leverage the expressivity and reasoning power of modern SMT solving. Its for-
mulas use the language and semantics of the SMT-LIB standard [17], and its
model checking algorithms use an SMT solving oracle. To streamline the interac-
tion with SMT solvers, Pono uses Smt-Switch [59], an open-source C++ API for
SMT solving. Smt-Switch provides a convenient, efficient, and generic interface
for SMT solving. Smt-Switch supports a variety of SMT solver back-ends and
can switch between them easily.

The diagram in Fig. 1 displays the overall architecture of Pono. The blocks
with a dashed outline are globally available and used throughout the codebase.

Pono Model Checker 3

Fig. 1: Architecture Diagram

The Pono API provides access to all of the components shown, supporting the
design goal of giving expert users control and flexibility.

Core. The TransitionSystem class in Pono represents symbolic transition sys-
tems as structured Smt-Switch terms. Key data structures include the following:
i) inputvars: a vector of Smt-Switch symbolic constants representing primary
inputs to the system (i.e., they are part of X, but their primed versions are
not used and cannot appear in T); ii) statevars: a vector of Smt-Switch sym-
bolic constants corresponding to the non-input state variables (the remaining
variables in X); iii) next map: a map from current (X) to next-state (X ′) vari-
ables; iv) init: an Smt-Switch formula representing I(X); and v) trans: an
Smt-Switch formula representing T (X,X ′).

There are two kinds of transition systems: RelationalTransitionSystem
and FunctionalTransitionSystem. The former has no restrictions on the form
of the transition relation, while the latter is restricted to only functional up-
dates: an equality (update assignment) with a next-state variable on the left
and a function of current-state and input variables on the right. Some model
checking algorithms take advantage of this structure [46, 47]. Built-in checks
ensure compliance with the restrictions.

A Property is an Smt-Switch formula representing a property to check for
invariance.4 A ProverResult is an enum which can be one of the following:
i) UNKNOWN (result could not be determined, including incompleteness due to
checking only up to some bound); ii) FALSE (the property does not hold); iii) TRUE
(the property holds); and iv) ERROR (there was an internal error). The Unroller

4 Pono currently supports invariant checking. Support for temporal properties is left
to future work.

4 M. Mann, A. Irfan, F. Lonsing, et. al.

is a class for producing unrolled transition systems, i.e., encoding a finite-length
symbolic execution by introducing fresh variables for each timestep.

Engines. Model checking algorithms are implemented as subclasses of the ab-
stract class Prover and stored in the engines directory. We cover the current
suite of engines in more detail in Section 3.

Frontends. Although users can manually build transition systems through the
API, it is also convenient to generate transition systems from structured in-
put formats. Pono includes the following frontends: i) BTOR2Encoder: uses the
open-source btor2tools [2] library to read the BTOR2 [66] format for hardware
model checking; ii) SMVEncoder: supports a subset of nuXmv’s [30] SMT-based
theory extension of SMV [61], which added support for infinite-state systems;
iii) CoreIREncoder: encodes the CoreIR [11] circuit intermediate representa-
tion. Note that Verilog [10] can be supported by using a translator from Verilog
to either BTOR2 or SMV. Examples of translators include Yosys [72] and Ver-
ilog2SMV [53], both of which are open-source.

Printers. Pono prints witness traces when a property does not hold. The sup-
ported formats are the BTOR2 witness format and the VCD standard format used
by EDA tools [10]. For theories such as arithmetic that are not supported by
these formats, Pono implements simple extensions, ensuring that all variable
assignments are included in witness traces.

Modifiers and Refiners. Pono includes functions that perform various trans-
formations on transition systems, including: adding an auxiliary variable [14];
building an implicit predicate abstraction [70]; and computing a static cone-of-
influence reduction for a functional transition system under a given property. It
also includes functions for refining an abstract transition system.

Utils and Options. utils contains a collection of general-purpose classes and
functions for manipulating and analyzing Smt-Switch terms and transition sys-
tems. options contains a single class, PonoOptions, for managing command-line
options.

API. Pono’s native API is in C++. In addition, Pono has Python bindings that
interact with the Smt-Switch Python bindings, both written in Cython [20].
These bindings behave very similarly to “pure” Python objects, allowing intro-
spection and pythonic use of the API.

We follow best practices for modern C++ development and code quality
maintenance, including issue tracking, code reviews, and continuous integration
(via GitHub Actions). The build infrastructure is written in CMake [3] and is
configurable. The Pono repository also provides helper scripts for installing its
dependencies. We support GoogleTest [5] for unit testing and gperftools [12]
for code profiling. Tests can be parameterized by both the SMT solver and the
algorithm or type of transition system. We utilize PyTest [9] to manage and
parameterize unit tests for the python bindings.

Pono Model Checker 5

3 Capabilities

In this section, we highlight some key capabilities of Pono. The design makes
use of abstract interfaces and inheritance to make it easy to add or extend
functionality. Base class implementations of core functionality are provided but
are kept simple to prioritize readability and transparency. And, of course, they
can be overridden using inheritance and virtual functions.

We start by describing the interface and engines provided for push-button
verification. Next, we take a closer look at two ways that the basic architecture
can be extended. We then show how to use Pono to reason about a transition
system using algebraic datatypes, demonstrating the expressive power provided
by the SMT back-end.

Main Engines. All model checking algorithms in Pono are derived classes of
the abstract base class Prover. The base class defines a simple public interface
through a set of virtual functions:

– initialize initializes any objects and data structures the prover needs.
– check until takes a non-negative integer parameter, k (the effort level),

and calls the prover engine (the meaning of k is algorithm-dependent: in
BMC [21] and k-induction [68], k is the unrolling length and in IC3-style [25]
algorithms, it is the number of frames). The interface allows check until to
be called repeatedly with increasing values of k. An incremental algorithm
can take advantage of this to reuse proof effort from previous calls. Engines
that produce full proofs can do so as long as they do it within the provided
effort level.

– prove attempts to prove a property without any limit on the bound.
– witness is called after a failed call to prove or check until. It provides

variable assignments for each step in a counterexample trace.
– invar is called after a successful full proof; it returns an inductive invariant

that implies the property. The invariant is an Smt-Switch Term over current-
state variables. Not all algorithms support this functionality.

Pono has several engines, all of which have been lifted to the SMT-level. We
now list the main engines and include the corresponding lines of code (LoC)
in the primary source file (the LoC includes all comments and license head-
ers): 1. Bounded Model Checking [21] (88 LoC); 2. K-Induction [68] (161 LoC);
3. Interpolant-based Model Checking [62] (230 LoC); 4. IC3-style algorithms [25]
(see below for LoC). The engines leverage the reusable infrastructure described
in Section 2 (e.g., the Unroller for the unrolling based techniques).

IC3 Variants. IC3 is widely recognized as one of the best-performing algorithms
for SAT-based model checking [43]. Liftings to SMT are an area of active research
and have produced several variations with promising results [24, 35, 54, 34, 55,
51, 71, 23, 47]. To support this active research direction, Pono includes a special
IC3 base class IC3Base, which implements a framework common to all variations
of the algorithm.5 The framework has several parameters that can be provided by

5 For details on how the IC3 algorithm works, we refer the reader to [25, 43].

6 M. Mann, A. Irfan, F. Lonsing, et. al.

specific instances of the algorithm: IC3Formula is a configurable data structure
used to represent formulas constraining IC3 frames; inductive generalization

is the method used for inductive generalization; predecessor generalization

is the method used for predecessor generalization; and abstract and refine

are methods that can be implemented for abstraction-refinement approaches to
IC3 [35, 47]. The implementation of IC3Base is 1086 lines of code. Current in-
stantiations of IC3Base implemented in Pono include: i) IC3: a standard Boolean
IC3 implementation [25, 43] (152 LoC); ii) IC3Bits: a simple extension of IC3 to
bit-vectors, which learns clauses over the individual bits (113 LoC); iii) Model-
based IC3: a naive implementation of IC3 lifted to SMT, which learns clauses
of equalities between variables and model values (397 LoC); iv) IC3IA: IC3 via
Implicit Predicate Abstraction [35] (456 LoC); v) IC3SA: a basic implementation
of IC3 with Syntax-Guided Abstraction for hardware verification [47] (984 LoC);
vi) SyGuS-PDR: a syntax-guided synthesis approach for inductive generalization
targeting hardware designs [73] (1047 LoC).

Counterexample-Guided Abstraction Refinement (CEGAR). CEGAR
[57] is a popular framework for iteratively solving difficult model checking prob-
lems. It is typically parameterized by the underlying model checking algorithm,
which operates on an abstract system that is iteratively refined as needed. Pono
provides a generic CEGAR base class, parameterized by a model checking engine
through a template argument. We describe two example uses of the CEGAR
infrastructure implemented in Pono.

Operator Abstraction. This simple CEGAR algorithm uses uninterpreted func-
tions (UF) to abstract potentially expensive theory operators (e.g. multiplica-
tion). The implementation is parameterized by the set of operators to replace
with UFs. The refinement step analyzes a counterexample trace by restoring
the concrete theory operator semantics. If the trace is found to be spurious, con-
straints are added to enforce the real semantics for the abstracted operators (e.g.,
equalities between certain abstract UFs and their theory operator counterparts),
thus ruling out the spurious counterexample.

Counterexample-Guided Prophecy. This CEGAR approach replaces array vari-
ables with initially memoryless variables of uninterpreted sort and replaces the
select and store array operators with UFs [58]. Due to the array theory seman-
tics, it is not always possible to remove spurious counterexamples with quantifier-
free refinement axioms over existing variables. However, instead of using poten-
tially expensive quantifiers, the algorithm adds auxiliary variables (history and
prophecy variables) [14], which can rule out spurious counterexamples of a given
finite length. This approach has the effect of removing the need for array solv-
ing and can sometimes prove properties using prophecy variables that would
otherwise require a universally quantified invariant.

Case Study with Algebraic Datatypes. To illustrate the flexibility of Pono’s
SMT-based formalism, we next describe a case study with generalized algebraic
theories (GATs) [29]. GATs are a rich formalism which can be used for high-level
specifications of software or mathematical constructs. While the equality of two

Pono Model Checker 7

terms in a GAT is undecidable, one can ask the bounded question: “Does there
exist a path of up to n rewrites to take a source term to a target term?”

To model this question, we use algebraic datatypes to represent depend-
ently-typed abstract syntax trees (ASTs), paths through an AST (e.g., the 2nd
argument of the 3rd argument of a term’s 1st argument), and rewrite rules (e.g.,
succ(n+1) = succ(m+1) ≡ succ(n) = succ(m)). Smt-Switch supports algebraic
datatypes through the CVC4 [18] back-end. A rewrite function is encoded as a
transition relation. The decision of which rule to apply and at which subpath
to apply it is controlled by input variables, and a state variable represents the
current AST term (initially set to the source term). We check the property
that the target term is not reachable from the source term. Consequently, any
discovered counterexample is a valid rewrite sequence, serving as a proof of an
equality that holds in the theory.

The workflow accepts a GAT input, produces an SMT encoding optimized
for that particular theory, and then parses user-provided source and target terms
into this theory before running bounded model checking. We used Pono to suc-
cessfully find equalities in the theories of Boolean algebras, preorders, monoids,
categories, and read-over-write arrays. This case study demonstrates Pono’s abil-
ity to model and model check unconventional systems.

4 Related Work

Existing academic model checkers span a wide range of supported theories,
modeling capabilities, and implemented algorithms. An important early model
checker was SMV [61], which pioneered symbolic model checking of temporal logic
properties [67] through BDDs [28]. NuSMV [32] and NuSMV2 [33] refined and ex-
tended the tool, followed by nuXmv [30] – a closed-source tool which added sup-
port for various SMT-based verification techniques using the SMT solver Math-
SAT5 [36]. Spin [52] is a well-known explicit-state model checker with extensive
support for partial order reduction and other optimizations.

Several model checkers specifically target hardware verification. ABC [26] is a
well-established, state-of-the-art bit-level hardware model checker based on SAT
solving. CoSA [60] is an open-source model checker implemented in Python using
the Python solver-agnostic SMT solving library, PySMT [45]. Although CoSA

also relies on a generic API similar to Smt-Switch, the Python implementation
introduces significant overhead, limiting its ability to include efficient procedures
that must be implemented outside of the underlying SMT solver (e.g., CEGAR
loops and some IC3 variants). AVR [48] is a state-of-the-art SMT-based hardware
model checker supporting several standard model checking algorithms. It also im-
plements a novel technique: IC3 via syntax-guided abstraction [47]. Importantly,
AVR won the hardware model checking competition in 2020 [22], outperforming
the previous state-of-the-art SAT-based model checker, ABC. AVR is currently
closed-source, making it unsuitable for several of the use-cases targeted by our
work, but a binary is available on GitHub [1].

8 M. Mann, A. Irfan, F. Lonsing, et. al.

There are several SMT-based model checkers focused on parameterized proto-
cols. MCMT [46], the open-source extension Cubicle [49], and related systems [15,
16] perform backward-reachability analysis over infinite-state arrays.

Other open-source SMT-based model checkers include: i) ic3ia [13] – an
example implementation of IC3IA built on MathSAT [36]; ii) Kind2 [31] – a
model checker for Lustre programs; iii) Sally [42] – a model checker for infinite-
state systems that uses the SAL language [65] and MCMT, an extension of
the SMT-LIB text format for declaring transition systems; iv) Spacer [56] – a
Constrained Horn Clauses (CHC) solver built into the open-source Z3 [64] SMT
solver, also based on an IC3-style algorithm; and v) Intrepid [27] – a model
checker focusing primarily on the control engineering domain.

Pono is open-source, SMT-based, and implements a variety of model checking
algorithms over transition systems. Furthermore, in contrast to the tools which
focus on more limited domains, it has support for a wide set of SMT theories
including fixed-width bit-vectors, arithmetic, arrays, and algebraic datatypes.
To our knowledge all current open-source SMT-based model checkers tie the
implementation directly to an existing SMT solver or use PySMT or the SMT-
LIB text format to interact with arbitrary solvers. In contrast, Pono makes use
of the C++ API of Smt-Switch to efficiently manipulate SMT terms and solvers
in memory without a need for a textual interface. This allows Pono to provide
both flexibility and performance. Finally, like the new model checker Intrepid,
Pono provides an extensive API, which can be adapted and extended as needed.
However, the focus is broader than Intrepid in terms of application domains.

5 Evaluation

In this section, we evaluate Pono6 against current state-of-the-art model checkers
across several domains. Our evaluation is not intended to be exhaustive. Rather,
we highlight the breadth of Pono by selecting four sets of benchmarks in three di-
verse categories and a few reasonable competitors for each. The benchmarks are
drawn from the following theories: i) unbounded quantifier-free arrays indexed by
integers; ii) quantifier-free linear arithmetic over reals and integers; and iii) hard-
ware verification over quantifier-free bit-vectors and (finite, bit-vector indexed)
arrays. We ran all experiments on a 3.5GHz Intel Xeon E5-2637 v4 CPU with a
timeout of 1 hour and a memory limit of 16Gb. For all results, we also include
the average runtime of solved instances in seconds. For portfolio solving, we ran
each configuration in its own process with the full time and memory resources.
In the first two categories, Pono used MathSAT5 [36] as the underlying SMT
solver and interpolant [40, 62, 37] producer. For the hardware benchmarks, it
used MathSAT5, Boolector [66], or both, depending on the configuration.

Arrays. We evaluate Pono on the integer-indexed array benchmark set of [44].
These are Constrained Horn Clauses (CHC) benchmarks inspired by software

6 GitHub commit c175a302857ff00229a0919d5cc8fc3f78d04a26

Pono Model Checker 9

Pono prophic3 prophic3-SA freqhorn nuXmv

solved 71 (16s) 71 (20s) 66 (31s) 69 (6s) 4 (51s)

Fig. 2: Results on Freqhorn Array benchmarks (81 total), all expected to be safe.

result SystemC (43 total) Lustre (951 total)

Pono nuXmv Pono nuXmv kind2

safe 18 (673s) 21 (571s) 521 (10s) 516 (8s) 506 (2s)

unsafe 14 (325s) 15 (479s) 412 (5s) 412 (1s) 409 (0.2s)

total 32 (521s) 36 (533s) 933 (8s) 928 (5s) 915 (1s)

Fig. 3: Results on arithmetic benchmarks.

verification problems. Although there are no quantifiers in the benchmarks them-
selves, most cannot be proved safe without strengthening the property with
quantified invariants. We compare against: i) freqhorn [44], a state-of-the-art
CHC solver for this type of problem; ii) prophic3 [8], a recent method that out-
performs freqhorn [58]; and iii) nuXmv, which does not support quantified in-
variants, to illustrate that most of these benchmarks do require them; freqhorn
takes the CHC format natively, and we used scripts from the ic3ia and nuXmv

distributions to translate the CHC input to SMV and the Verification Mod-
ulo Theories (VMT) format [38] – an annotated SMT-LIB file representing a
transition system – for the other tools. We ran Pono with Counterexample-
Guided Prophecy using IC3IA as the underlying model checking technique. We
ran prophic3 with both of the option sets used in their paper, and we ran the
default configuration of freqhorn. Our results are shown in Fig. 2. We observe
that Pono solves the same number of benchmarks as the reference implementa-
tion prophic3 and is a bit faster.

Arithmetic. We next evaluate Pono on two sets of arithmetic benchmarks,
both from the nuXmv distribution’s example directory. The first uses linear real
arithmetic, and the second uses linear integer arithmetic. Fig. 3 displays the
results on both benchmark sets.

Linear Real Arithmetic. We chose the systemc QF LRA example benchmarks,
because this is the largest set of linear real arithmetic benchmarks in the subset
of SMV supported by Pono.7 We ran both nuXmv and Pono with BMC and
IC3IA in a portfolio. For both model checkers, BMC did not contribute any
unique solves. We observe that Pono is quite competitive with nuXmv on nuXmv’s
own benchmarks.

Linear Integer Arithmetic. We also evaluate Pono on a set of Lustre benchmarks
which use quantifier-free linear integer arithmetic. We obtained the Lustre bench-
marks from the Kind [50] website [6] and the SMV translation of the benchmarks
from the distribution of nuXmv. We compare against both nuXmv and Kind2 [31],
the latest version of Kind. We ran all tools with a portfolio of techniques. For

7 Pono does not yet support enumeration types.

10 M. Mann, A. Irfan, F. Lonsing, et. al.

result BV (324 total) BV + Array (315 total)

Pono AVR CoSA2 sygus-apdr Pono AVR CoSA2

safe 183 (283s) 215 (115s) 98 (283s) 115 (545s) 252 (224s) 274 (63s) 209 (299s)

unsafe 47 (314s) 47 (220s) 41 (232s) 15 (279s) 19 (208s) 19 (352s) 19 (204s)

total 230 (289s) 262 (134s) 139 (268s) 130 (514s) 271 (223s) 293 (82s) 228 (291s)

Fig. 4: Results on HWMCC2020 benchmarks.

Pono and nuXmv we ran BMC and IC3IA. For Kind2 we ran two configurations
suggested by the authors: the default configuration with Z3 [64] and the default
configuration, but with Yices2 [41] as the main SMT solver. Since the default
configurations of Kind2 run 8 techniques in parallel, we gave each configura-
tion 8 cores. Additionally, we ran Kind2’s BMC and IC3 implementations using
MathSAT5 as the SMT solver, because this is closest to the other model check-
ers’ configurations. The default with Z3 was the best configuration of Kind2.
We observe that Pono solves the most benchmarks overall. Once again, BMC
contributed no unique solves for any model checker.

Hardware Verification. Finally, we evaluate Pono on the 2020 Hardware
Model Checking Competition (HWMCC) benchmarks. The benchmarks are split
into bitvector-only and bitvector plus array categories. We evaluate against
AVR [48, 1] and CoSA2 [4] (a previous name and version of Pono), the winners
of HWMCC 2020 and HWMCC 2019, respectively. We also compare against
sygus-apdr (the reference implementation of SyGuS-PDR [73]) on the bitvec-
tor benchmarks (as sygus-apdr targets bitvectors). We ran all 16 configura-
tions of AVR from their HWMCC 2020 entry: several configurations of BMC and
k-induction, and 11 configurations of IC3SA. We ran the 4 configurations of
CoSA2 from the HWMCC 2019 entry: two BMC configurations, k-induction, and
interpolant-based model checking. We ran sygus-apdr with 4 different param-
eters controlling the grammar for lemmas. For the bitvector-only benchmarks,
we ran Pono with 10 configurations: 3 configurations of IC3IA, 2 configurations
of IC3SA, 2 configurations of SyGuS-PDR, IC3Bits, k-induction, and BMC. For
the array benchmarks, we ran 5 configurations: 3 configurations of IC3IA (one
with Counterexample-Guided Prophecy), k-induction, and BMC. We show our
results on the HWMCC 2020 benchmarks in Fig. 4. AVR wins in both categories,
although Pono is fairly competitive, outperforming the other tools.

These results show that Pono is well on its way to being both widely applica-
ble and performance-competitive. The arithmetic experiments demonstrate the
capabilities of its IC3IA engine, but other engines have some room for improve-
ment. In particular, both IC3SA and SyGuS-PDR were recently added to Pono,
and its implementation of these algorithms still lags the corresponding imple-
mentations in AVR and sygus-apdr, respectively. There are also some features
that are known to help performance and are not yet implemented in Pono. For
example, the best configurations of AVR use UF data abstraction. This differs
from our UF operator abstraction in that it replaces all abstracted data with
uninterpreted sorts and learns targeted data refinement axioms.

Pono Model Checker 11

6 Conclusion

We have presented Pono: a new open-source, SMT-based, and solver-agnostic
model checker. We described its capabilities, design, and the emphasis on flexi-
bility and extensibility in addition to performance. We demonstrated empirically
that the suite of model checking algorithms is competitive with state-of-the-art
tools. Pono has already been used in several research projects and two graduate-
level classes. With this promising start, we believe that Pono is poised to have
an enduring and beneficial impact on research, education, and model checking
applications. Future work includes adding support for temporal properties [67]
and improving and adding to Pono’s engines, in particular the IC3 variants.

Acknowledgements. This work was partially supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No. DGE-1656518. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation. This work was also supported by
the Defense Advanced Research Projects Agency, grants FA8650-18-1-7818 and FA8650-18-2-7854.
We thank these sponsors and our industry collaborators for their support.

References

1. AVR distribution, https://github.com/aman-goel/avr
2. btor2tools, https://github.com/Boolector/btor2tools
3. CMake. https://cmake.org
4. cosa2, https://github.com/upscale-project/cosa2
5. GoogleTest https://github.com/google/googletest
6. Kind site, http://clc.cs.uiowa.edu/Kind/index.php?page=experimental-results
7. Pono, https://github.com/upscale-project/pono
8. ProphIC3 (commit: 497e2fbfb813bcf0a2c3bcb5b55ad47b2a678611), https:

//github.com/makaimann/prophic3
9. pytest 5.4.2, https://github.com/pytest-dev/pytest

10. IEEE Std 1364-2005 pp. 1–590 (2006)
11. CoreIR. https://github.com/rdaly525/coreir (2017)
12. Google Perftools (2017), https://github.com/gperftools/gperftools
13. ic3ia (Accessed 2020), https://es-static.fbk.eu/people/griggio/ic3ia/index.html
14. Abadi, M., Lamport, L.: The existence of refinement mappings. In: Proceedings of

LICS. pp. 165–175 (July 1988)
15. Alberti, F., Bruttomesso, R., et al.: SAFARI: SMT-based abstraction for arrays

with interpolants. In: Proceedings of CAV. pp. 679–685 (2012)
16. Alberti, F., Ghilardi, S., Sharygina, N.: Booster: An acceleration-based verification

framework for array programs. In: Proceedings of ATVA. pp. 18–23 (2014)
17. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library

(SMT-LIB) (2016), www.smt-lib.org
18. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,

Reynolds, A., Tinelli, C.: CVC4. In: Proceedings of CAV. pp. 171–177 (2011)
19. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-

ries. In: Handbook of Satisfiability, pp. 825–885 (2009)
20. Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K.: Cython:

The best of both worlds. Computing in Science & Engineering (2), 31–39 (2011)
21. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without

BDDs. In: Proceedings of TACAS. pp. 193–207 (1999)

https://github.com/aman-goel/avr
https://github.com/Boolector/btor2tools
https://cmake.org
https://github.com/upscale-project/cosa2
https://github.com/google/googletest
http://clc.cs.uiowa.edu/Kind/index.php?page=experimental-results
https://github.com/upscale-project/pono
https://github.com/makaimann/prophic3
https://github.com/makaimann/prophic3
https://github.com/pytest-dev/pytest
https://github.com/rdaly525/coreir
https://github.com/gperftools/gperftools
https://es-static.fbk.eu/people/griggio/ic3ia/index.html
www.smt-lib.org

12 M. Mann, A. Irfan, F. Lonsing, et. al.

22. Biere, A., Froleyks, N., Preiner, M.: Hardware model checking competition (2020),
http://fmv.jku.at/hwmcc20/

23. Birgmeier, J., Bradley, A., Weissenbacher, G.: Counterexample to induction-guided
abstraction-refinement (CTIGAR). In: Proceedings of CAV. pp. 831–848 (2014)

24. Bjørner, N., Gurfinkel, A.: Property Directed Polyhedral Abstraction. In: Proceed-
ings of VMCAI. pp. 263–281 (2015)

25. Bradley, A.: SAT-based model checking without unrolling. In: Proceedings of VM-
CAI. pp. 70–87 (2011)

26. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Proceedings of CAV. pp. 24–40 (2010)

27. Bruttomesso, R.: Intrepid: An SMT-based model checker for control engineering
and industrial automation. In: SMT Workshop (08 2019)

28. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers (8), 677–691 (1986)

29. Cartmell, J.: Generalised algebraic theories and contextual categories. Annals of
Pure and Applied Logic pp. 209 – 243 (1986)

30. Cavada, R., Cimatti, A., et al.: The nuXmv symbolic model checker. In: Proceed-
ings of CAV. pp. 334–342 (2014)

31. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: Proceedings of CAV. pp. 510–517 (2016)

32. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic
model verifier. In: Proceedings of CAV. pp. 495–499 (1999)

33. Cimatti, A., Clarke, E.M., et al.: NuSMV 2: An opensource tool for symbolic model
checking. In: Proceedings of CAV. pp. 359–364 (2002)

34. Cimatti, A., Griggio, A., Irfan, A., et al.: Incremental linearization for satisfiability
and verification modulo nonlinear arithmetic and transcendental functions. ACM
Trans. Comput. Log. pp. 19:1–19:52 (2018)

35. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking
with IC3 and predicate abstraction. FMSD (3), 190–218 (2016)

36. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S. (eds.) Proceedings of TACAS (2013)

37. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants
in satisfiability modulo theories. ACM Trans. Comput. Log. (1), 7:1–7:54 (2010)

38. Cimatti, A., et al.: Verification Modulo Theories (2011), http://www.vmt-lib.org
39. Clarke, E., Henzinger, T., et al.: Handbook of Model Checking (2018)
40. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.

Symb. Log. (3), 250–268 (1957)
41. Dutertre, B.: Yices 2.2. In: Proceedings of CAV. pp. 737–744 (2014)
42. Dutertre, B., Jovanovic, D., Navas, J.A.: Verification of fault-tolerant protocols

with Sally. In: Proceedings of NFM. pp. 113–120 (2018)
43. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property di-

rected reachability. In: Proceedings of FMCAD. pp. 125–134 (2011)
44. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified invariants via

syntax-guided synthesis. In: Proceedings of CAV. pp. 259–277 (2019)
45. Gario, M., Micheli, A.: PySMT: A solver-agnostic library for fast prototyping of

SMT-based algorithms. In: Proceedings of SMT Workshop. pp. 373–384 (2015)
46. Ghilardi, S., Ranise, S.: MCMT: A model checker modulo theories. In: Automated

Reasoning. pp. 22–29 (2010)
47. Goel, A., Sakallah, K.A.: Model checking of Verilog RTL using IC3 with syntax-

guided abstraction. In: Proceedings of NFM. pp. 166–185 (2019)

http://fmv.jku.at/hwmcc20/
http://www.vmt-lib.org

Pono Model Checker 13

48. Goel, A., Sakallah, K.A.: AVR: Abstractly Verifying Reachability. In: Proceedings
of TACAS. pp. 413–422 (2020)

49. Goel, A., Krstic, S., Leslie, R., Tuttle, M.R.: SMT-based system verification with
DVF. In: Proceedings of SMT Workshop. pp. 32–43 (2012)

50. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with
SMT-based techniques. In: Proceedings of FMCAD. pp. 1–9 (2008)

51. Ho, Y., Mishchenko, A., Brayton, R.K.: Property directed reachability with word-
level abstraction. In: Proceedings of FMCAD. pp. 132–139 (2017)

52. Holzmann, G.J.: The SPIN Model Checker - primer and reference manual (2004)
53. Irfan, A., Cimatti, A., Griggio, A., Roveri, M., Sebastiani, R.: Verilog2SMV: A

tool for word-level verification. In: Proceedings of DATE. pp. 1156–1159 (2016)
54. Jovanovic, D., Dutertre, B.: Property-directed k-induction. In: Proceedings of FM-

CAD. pp. 85–92 (2016)
55. K., H.G.V., Fedyukovich, G., Gurfinkel, A.: Word level property directed reacha-

bility. In: Proceedings of ICCAD. pp. 107:1–107:9 (2020)
56. Komuravelli, A., Gurfinkel, A., et al.: Automatic abstraction in SMT-based un-

bounded software model checking. In: Proceedings of CAV. pp. 846–862 (2013)
57. Kroening, D., Groce, A., Clarke, E.M.: Counterexample guided abstraction refine-

ment via program execution. In: Proceedings of ICFEM. pp. 224–238 (2004)
58. Mann, M., Irfan, A., et al.: Counterexample-guided prophecy for model checking

modulo the theory of arrays. In: Proceedings of TACAS. pp. 113–132 (2021)
59. Mann, M., Wilson, A., et al.: Smt-Switch: A Solver-agnostic C++ API for SMT

Solving. In: Proceedings of SAT (2021)
60. Mattarei, C., Mann, M., Barrett, C., et al.: CoSA: Integrated verification for agile

hardware design. In: Proceedings of FMCAD. pp. 1–5 (2018)
61. McMillan, K.: Symbolic model checking - an approach to the state explosion prob-

lem. Ph.D. thesis, Carnegie Mellon University (1992)
62. McMillan, K.L.: Interpolants and symbolic model checking. In: Proceedings of

VMCAI. pp. 89–90 (2007)
63. McMillan, K.L., Padon, O.: Ivy: A multi-modal verification tool for distributed

algorithms. In: Proceedings of CAV. pp. 190–202 (2020)
64. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of TACAS.

pp. 337–340 (2008)
65. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:

Sal 2. In: Proceedings of CAV. pp. 496–500 (2004)
66. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2 , BtorMC and Boolector 3.0.

In: Proceedings of CAV. pp. 587–595 (2018)
67. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS. pp. 46–57

(1977)
68. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction

and a SAT-solver. In: Proceedings of FMCAD. pp. 108–125 (2000)
69. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:

Handbook of Satisfiability, pp. 131–153 (2009)
70. Tonetta, S.: Abstract model checking without computing the abstraction. In: Pro-

ceedings of FM. pp. 89–105 (2009)
71. Welp, T., Kuehlmann, A.: QF BV model checking with property directed reacha-

bility. In: Proceedings of DATE. pp. 791–796 (2013)
72. Wolf, C., Glaser, J., Kepler, J.: Yosys-a free Verilog synthesis suite. In: Proceedings

of Austrochip Workshop (2013)
73. Zhang, H., Gupta, A., Malik, S.: Syntax-guided synthesis for lemma generation in

hardware model checking. In: Proceedings of VMCAI (2021)

	Pono: A Flexible and Extensible SMT-based Model Checker

