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Abstract. The Model Constructing Satis�ability (MCSat) approach to
the SMT problem extends the ideas of CDCL from the SAT level to the
theory level. Like SAT, its search is driven by incrementally constructing
a model by assigning concrete values to theory variables and performing
theory-level reasoning to learn lemmas when con�icts arise. Therefore,
the selection of values can signi�cantly impact the search process and the
solver's performance. In this work, we propose guiding the MCSat search
by utilizing assignment values discovered through local search. First, we
present a theory-agnostic framework to seamlessly integrate local search
techniques within the MCSat framework. Then, we highlight how to use
the framework to design a search procedure for (quanti�er-free) Nonlin-
ear Integer Arithmetic (NIA), utilizing accelerated hill-climbing and a
new operation called feasible-sets jumping. We implement the proposed
approach in the MCSat engine of the Yices2 solver, and empirically
evaluate its performance over the NIA benchmarks of SMT-LIB.

1 Introduction

Satis�ability Modulo Theory (SMT) is the problem of deciding the satis�abil-
ity of a �rst-order formula with respect to de�ned background theories. SMT
solvers are the core backbone of a vast range of veri�cation and synthesis tools
that require reasoning about expressive logical theories such as real/integer arith-
metic [3,16]. One of the major state-of-the-art approaches to SMT is the Model
Constructing Satis�ability calculus (MCSat) [29,15], which generalizes the ideas
of Con�ict-Driven Clause Learning (CDCL) to the theory level, and which has
been shown to perform particularly well on complex theories such as nonlinear
arithmetic. In the MCSat approach, the solver progressively constructs a theory

model, similarly to how SAT solvers construct Boolean models. Theory reason-
ing is used to assess the consistency of partial models, provide explanations of
infeasibility, decide theory variables, and propagate theory constraints.
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When extending the partial model with a new assignment to a theory vari-
able, picking a good value is critical for the overall performance of the solver.
Heuristics used by state-of-the-art solvers pick values on the basis of compati-
bility with the current search state and of computational cheapness. This has a
major drawback: these heuristics only consider knowledge of the current search
state, neglecting information on how likely a particular assignment is to lead to
a satisfying model eventually.

In this work, we address the problem of choosing good values for variable de-
cisions by augmenting the current search state knowledge with insights provided
by local search techniques. Following the logic-to-optimization approach [19,37],
we associate to the logical formula a cost function that represents the distance

from a model, and use local search to �nd assignments that have a small cost.
These assignments are then used to guide future MCSat decisions.

Although local search has already been used in the context of SMT, either as
a standalone solver [46,35,6] or as a CDCL(T) theory solver [48], our work is the
�rst to propose a tight integration of local search within the MCSat framework,
creating a powerful synergy between the reasoning capabilities of MCSat and
the intuition provided by local search which boosts performance for both satis�-
able and unsatis�able instances. Our novel approach is �exible enough to allow
calls to local search at any point during the MCSat search, seamlessly �tting
with the current state. As MCSat progresses through decisions, propagations,
and con�icts, the local search problem is instantiated accordingly: (i) the cost
function is built upon the simpli�cation of the original formula under current
state assumptions, (ii) initial local search assignments are based on the current
search state as well as cached values, and (iii) local search moves are enhanced
by information on intervals of feasible assignments to theory variables as tracked
by the MCSat engine.

While our approach can be applied to any theory supported by MCSat, in this
work we showcase its application to the theory of nonlinear integer arithmetic
(NIA). In particular, we design a procedure based on a new operation called
feasible-sets jumping, which allows to move between feasible intervals, and on
accelerated hill-climbing [26], to move inside feasible intervals.

Contributions. In this work we: (i) design a theory-agnostic framework to tightly
integrate local search techniques within the MCSat approach in order to guide
variable decisions, (ii) use the framework to de�ne a local search procedure for the
theory of nonlinear integer arithmetic, that makes use of feasible-sets jumping
and accelerated hill-climbing, and (iii) show the practical applicability of our
method using our implementation in the MCSat engine of Yices2 [17] on the
quanti�er-free NIA benchmark set of SMT-LIB [2].

Structure. In Section 2, we provide the necessary background. Section 3 describes
a deep integration of local search techniques within the MCSat framework from
a general point of view, which is applied in Section 4 to de�ne a local search
approach for non-linear integer arithmetic. In Section 5, we show and discuss
the results of our experiments before presenting related work in Section 6 and
concluding in Section 7.
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2 Preliminaries

We assume basic knowledge on the standard �rst-order quanti�er-free logical set-
ting and standard notions of theory, satis�ability, and logical consequence. We
write logical variables with x, y, . . ., and concrete values with α, β, . . . (the do-
main of concrete values is theory speci�c, e.g. Z for integer arithmetic, R for real
arithmetic). An assignment µ is a map from variables to values of matching type.
If ϕ is a formula, we denote with Vars(ϕ) the set of its (free) variables. We use C
to denote clauses, and L to denote literals. Nonlinear Integer Arithmetic (NIA)
is the theory consisting of arbitrary Boolean combinations of Boolean variables
and arithmetic atoms of the form of polynomial equalities and polynomial in-
equalities over integer variables. The theory is undecidable by Matiyasevich's
theorem [40].

2.1 SMT & MCSat

SMT [3] is the problem of deciding the satis�ability of a �rst-order formula with
respect to some theory or combination of theories. Two of the major approaches
for SMT solving are the Con�ict-Driven Clause Learning with theory support
(CDCL(T)) [42,3] and the MCSat approach. In the former, theory solvers aug-
ment a propositional SAT engine with theory reasoning procedures which are
capable of deciding a conjunction of literals (i.e. atomic formulas and their nega-
tions) in a particular theory. A propositional model (of the Boolean abstraction
of the formula) found by the SAT solver is then checked by all theory engines
for theory consistency.

The latter, MCSat, applies CDCL-like mechanisms to perform theory rea-
soning directly. It can be used either as a theory solver for a speci�c theory
(e.g. in Z3 [14] for non-linear arithmetic over the reals and the integers [4]), or
as a fully-�edged stand-alone engine able to handle multiple theories (e.g. in
Yices2 for non-linear arithmetic over the reals [30] and over the integers [28],
bit-vectors [21], arrays [27], and �nite �elds [25,24]; as well as in SMT-RAT [13]
for non-linear real arithmetic [33]). The MCSat architecture consists of a core
solver, an assignment trail, and plugins for theory reasoning. Figure 1 illustrates
the high level �ow of the MCSat framework.

The core solver incrementally constructs a partial model consisting of Boolean
and theory assignments (stored in a trail), maintaining the invariant that none
of the constraints evaluate to false under the partial model. The trail contains
three kinds of elements: propagated literals (literals implied to be true by the
current state), decided literals (literals that we assume to be true), and model

assignments (assignments of �rst-order variables to concrete values). Propaga-
tions, con�ict analysis, lemmas generation, and variable decisions are all handled
by theory plugins (including a Boolean plugin that is responsible for proposi-
tional reasoning). In general, plugins also keep a feasibility set for each variable
of their competence, containing the values that are consistent with the current
trail and are, thus, candidates to be picked for deciding the variable.
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Fig. 1: The MCSat framework consists of the following steps: 1) Propagate the trail.
2) If a con�ict is found during propagation, check if there is any decision to backtrack
over. If not, return UNSAT. Otherwise, explain the con�ict using a lemma, backtrack
the trail, and repeat step 1. 3) If no con�ict is found during propagation, decide on a
variable that is not on the trail. If there is nothing left to decide, return SAT. Otherwise,
add the decided variable to the trail and repeat step 1.

When the core solver selects a variable for decision, the choice of the value
to assign to the variable is handled by the theory plugin responsible for its type.
Some solvers (e.g. Yices2) implement a heuristic called value cache (a general-
ization of SAT phase saving [43]), that keeps track of the last value assigned to a
variable when the assignment is undone. Then, when a decision has to be made
for the variable, the cached value will be used, provided that it is still in the
feasibility set; otherwise, it will simply be ignored, and other heuristics will be
used (e.g. picking a default value such as 0).

In the following, we will denote withM the trail, with v[M ](x) the value of the
variable x in the trail (which may be equal to undef if the variable is not assigned
in the trail), and with v[M ](L) the value of the literal L under the assignment
in M which may be true (⊤) or false (⊥) if L can be fully evaluated under such
assignment, or undef otherwise. We denote with feasibleM (x) the feasibility set
of x in M , i.e. all values that can be chosen for x in the current search state
given by M . For arithmetical theories, we have that feasibleM (x) ⊆ R, and, in
particular, that feasibleM (x) is the union of a �nite set of feasible intervals, i.e.
feasibleM (x) =

⋃
i∈[0:m] Ii. We assume that theory plugins provide a function

pick_value(S) that returns a value from a set S.

Example 1. Assume a search problem in Z with variables x, y, and z given by
the input formula ϕ.

ϕ = (¬(x ≥ 1) ∨ (xy = 1)) ∧ (¬(xy = 1) ∨ (x+ 2yz > 0)) ∧ (z2 > 1)

A possible trail at some point during the search is

M = [(z2 > 1) 7→ ⊤, x 7→ 1, (x ≥ 1) 7→ ⊤, (xy = 1) 7→ ⊤]
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On M elements are either decided or propagated. The feasibility sets are given
by feasibleM (z) = (−∞,−1) ∪ (1,∞) and feasibleM (y) = {1} = feasibleM (x).
Since feasibleM (y) is a singleton, we can propagate the assignment y 7→ 1 on M .
We further have that v[M ]((x+ 2yz > 0)) = undef and v[M ](x) = 1.

2.2 Local Search

We de�ne a local search problem as a triple (µ0, fc,moves), where:

� µ0 is an initial assignment for a set of variables Vars,
� fc is a cost function from the set of assignments to R≥0,
� moves is a neighbor relation between assignments.

A local search algorithm starts from the initial assignment µ0 and iteratively
explores neighboring assignments according to the moves relation. We say that
µ′ is a move from µ if (µ, µ′) ∈ moves. A move µ′ is accepted if fc(µ

′) < fc(µ).
When a move is accepted, the new assignment becomes the current assignment
and the search continues until either: a zero-cost assignment is found, there are
no more possible moves (meaning that the current assignment represents a local

minimum), or a given stopping criterion is reached (e.g. number of moves).
The problem of �nding a solution for an SMT formula ϕ can be en-

coded as a local search problem, e.g., by following the logic-to-optimization
approach [19,37,38], in which a formula ϕ is mapped to a term L2O(ϕ) that
represents the distance from a solution.

In principle, the L2O operator can be de�ned for any theory for which the
concept of distance between terms makes sense. Here, we limit ourselves to arith-
metic theories. We introduce an arithmetic function symbol d of arity 2 and we
assume a �xed interpretation d that satis�es the properties of metric distance,
i.e. symmetry, positivity, re�exivity, and triangle inequality. We also assume the
existence of a �xed constant term ϵ, such that ϵ > 0. The speci�c choice of d
and ϵ is theory-dependent.

We recursively de�ne L2O as follows:

L2O(b)
def

= ITE(b, 0, 1)

L2O(¬b) def

= ITE(b, 1, 0)

L2O(t1 = t2)
def

= d(t1, t2)

L2O(t1 ≤ t2)
def

= ITE(t1 ≤ t2, 0, d(t1, t2))

L2O(t1 < t2)
def

= ITE(t1 < t2, 0, d(t1, t2) + ϵ)

L2O(t1 ̸= t2)
def

= ITE(t1 ̸= t2, 0, 1)

L2O(ϕ1 ∧ ϕ2)
def

= L2O(ϕ1) + L2O(ϕ2)

L2O(ϕ1 ∨ ϕ2)
def

= L2O(ϕ1) · L2O(ϕ2)

L2O(ITE(ϕc, ϕ1, ϕ2)
def

= ITE(ϕc, L2O(ϕ1), L2O(ϕ2))

L2O(¬ITE(ϕc, ϕ1, ϕ2))
def

= ITE(ϕc, L2O(¬ϕ1), L2O(¬ϕ2))

It is easy to check that a complete assignment µ satis�es ϕ if and only if
L2O(ϕ) evaluates to 0 under µ.
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In the following, with a slight abuse of notation, we denote with L2O(ϕ) also
the corresponding arithmetic function determined by the interpretation d and

the constant ϵ, and we de�ne the cost function associated to ϕ as fc
def

= L2O(ϕ).

Example 2. Let ϕ
def

= b ∧ x = y2, and d(t1, t2)
def

= |t1−t2|. Then, the cost function
associated to ϕ is

fc
def

= L2O(ϕ) = ITE(b, 0, 1) + |x− y2|

Now, let µ0
def

= {b 7→ ⊥ ; x 7→ 4 ; y 7→ 1} be a starting assignment. We
have that fc(µ0) = ITE(⊥, 0, 1) + |4 − 12| = 1 + 3 = 4. If we consider the

move µ1
def

= {b 7→ ⊤ ; x 7→ 4 ; y 7→ 1} that �ips b, then fc(µ1) = ITE(⊤, 0, 1) +
|4− 12| = 0 + 3 = 3, hence the move is improving and is accepted. Then, if we

consider the move µ2
def

= {b 7→ ⊤ ; x 7→ 4 ; y 7→ 2} that increases the value of
y by 1, we have fc(µ1) = ITE(⊤, 0, 1) + |4 − 22| = 0 + 0 = 0. Hence we have
found a zero for fc, i.e. a satisfying assignment for ϕ.

In general, local search is not guaranteed to �nd a solution of ϕ, if there is any.
Nevertheless, it returns a local minimum/best-e�ort value of the cost function
in the neighborhood of the initial assignment.

3 Deep combination of Local Search and MCSat

We propose a deep combination of MCSat and local search where: (i) the current
state of MCSat is used to instantiate a local search problem and (ii) the results
of the local search help guiding future MCSat decisions. Assuming we have a
local search procedure LS, we discuss how to instantiate LS (Section 3.1), as
well as how to use the result of LS within MCSat (Section 3.2).

3.1 Instantiating the Local Search problem

For the instantiation of LS, we determine the initial assignment and the formula
upon which the cost function is constructed. Both choices are of fundamental
importance. A good initial assignment is essential to �nd a good local minimum
of the cost function. A good local minimum is a local minimum that meets two
conditions: (i) it has a smaller cost compared to the cost of the initial assignment
and (ii) its assignment values are likely to be accepted by MCSat, i.e., they are
consistent with the current trail. Passing a simpli�ed formula that takes the truth
value of propagated and decided literals into account is also essential to tailor
the search to the current MCSat state and to avoid unnecessary computations.

Initial assignment. For every model assignment x 7→ α in M , the assigned
variable is treated as a constant that takes its respective assigned value (i.e., x is
treated as the constant α) and is not allowed to be changed in LS. This reduces
the dimension of the LS search space, and avoids moves inconsistent with the
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Algorithm 1 Initial assignment for LS

Input: a set Vars(ϕ), a trail M , a value cache cache, a feasibility map feasibleM

Output: an initial assignment µ0. a set of �xed variables VarsFixed ⊆ Vars(ϕ)
1: VarsFixed ← ∅
2: for x ∈ Vars(ϕ) do
3: if v[M ](x) ̸= undef then ▷ check if x has a value in the trail
4: µ0(x)← v[M ](x) ▷ assign trail value
5: VarsFixed .add(x)
6: else if cache(x) ̸= undef and cache(x) ∈ feasibleM (x) then
7: µ0(x)← cache(x) ▷ assign feasible cached value
8: else

9: µ0(x)← pick_value(feasibleM (x)) ▷ assign any feasible value

current trail. For initial assignment of variables that are unassigned in M , a
reasonable choice is to use cached values of previous search states, if present
in the value cache. However, cached values are not guaranteed to be in the
feasibility set, as they might be the result of a previous decision that eventually
led to a con�ict. Hence, we �rst check if the cached value is feasible. If it is not, or
there is no cached value, we pick any value from the feasibility set by asking the
appropriate theory plugin. The procedure for choosing the initial assignment is
shown in Algorithm 1. Note that, for all the variables, the feasibility set cannot be
empty. An empty feasibility set indicates an inconsistent trail which is resolved
using con�ict resolution before starting LS. MCSat maintains the invariant that,
for a consistent trail, the feasibility set of all variables is non-empty.

Formula for LS. Every Boolean assignment L 7→ {⊤,⊥} in M represents the
truth value of the literal L that is assumed to hold at the current search state

Algorithm 2 Formula for LS

Input: a formula ϕ, a trail M
Output: a subformula ϕLS of ϕ
1: ϕLS ← ⊤ ▷ formula to be passed to LS
2: for C ∈ ϕ do

3: CLS ← ⊥
4: for L ∈ C do

5: if v[M ](L) = ⊤ then ▷ if literal is assigned to true in trail
6: CLS ← ⊤ ▷ substitute the clause with true
7: ϕLS ← ϕLS ∧ L ▷ store literal
8: break

9: else if v[M ](L) = ⊥ then ▷ if literal is assigned to false in trail
10: ϕLS ← ϕLS ∧ ¬L ▷ store literal (with correct polarity)
11: continue ▷ ignore literal in the clause
12: else

13: CLS ← CLS ∨ L ▷ keep literal in the clause

14: ϕLS ← ϕLS ∧ CLS ▷ store simpli�ed clause
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(either because of a propagation or a decision). We can use this information to

simplify the original formula before passing it to LS. For a given clause C
def

=
L∨L1 ∨ . . . , if v[M ](L) = ⊤, then, for LS, it su�ces to �nd an assignment that
satis�es L, since such an assignment would satisfy C as well. Hence, in this case,
we shall pass to LS just L instead of C. On the other hand, if v[M ](L) = ⊥, then
there is no incentive for LS to try to �nd an assignment that makes L true, as
any such assignment would be inconsistent with the trail and will be discarded
by MCSat immediately. Thus, L is removed from the clause that is passed to
LS. Note that, by just removing L from the clause, we still may end up with
an assignment that evaluates L to ⊤. Therefore, for literals that are assigned to
⊥ in the trail, we add, just once, ¬L to the formula that we pass to LS. This
procedure is shown in Algorithm 2.

3.2 Guiding MCSat decisions

During the search, we periodically call LS to suggest values for MCSat to choose
in subsequent decisions. As a heuristic to decide when to call LS, we are utilizing
a polynomially increasing con�ict threshold. Initially, this limit is set to 50, and
then it is increased according to the polynomial 50 · ls_calls · log10(ls_calls+9)3,
where ls_calls represents the number of times LS has been called. A similar
heuristic is used by SAT solvers to decide when to perform certain cache clearing
operations [8]. Once the threshold is reached, we wait until the last con�ict has
been resolved and all consequences of that con�ict are propagated. Then we start
LS to guide any further decisions.

The return of LS consists of a complete assignment that contains suggested
values for future variable decisions. These suggested values are put in the MCSat
value cache � recall that the values in the cache are picked �rst during variable
decisions, provided that they are feasible. Note that, during the choice of the
initial assignment to pass to LS, we had relied on (feasible) cached values as
well. If a cached value was feasible and LS changed its value, it means that
such change led to a smaller cost, hence got us closer to a solution. Therefore,
replacing the old cached value with the newly found suggestion improves the
cache quality. On the other hand, if the cached value was not feasible, then any
change to a feasible value improves the cache quality.

Furthermore, LS keeps track of the activity of each variable during its execu-
tion. The most active variables have contributed most to the decrease of the cost
during LS. We suggest those variables to MCSat as good choices for subsequent
decisions. This way, variables that were more active during the local search phase
will have a higher impact on the MCSat search.

4 Local Search for Nonlinear Integer Arithmetic

As explained in Section 3.1, LS receives an initial assignment µ0 and a formula
ϕ from MCSat. The formula ϕ is used to construct the cost function fc using the

logic-to-optimization approach (Section 2.2), i.e. fc
def

= L2O(ϕ). To apply that,
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we must �rst de�ne the distance function d and the strict inequality constant ϵ
for integers. For d, we choose a consistent and computationally cheap de�nition

d(t1, t2)
def

= |t1− t2|. For ϵ, our choice is ϵ
def

= 1, since t < 0 is interchangeable with
t+ 1 ≤ 0 for integers.

The building blocks of local search are moves. We contemplate three types
of moves (or modes): one for Boolean variables, and two for integer variables.
Given an assignment µ, we have the following types of moves:

� Boolean �ips: For a Boolean variable b, the assignment µ¬b
def

= µ[b 7→ ¬µ(b)]
obtained by changing the value of b to the negation of its value assigned by
µ is a �ip move from µ.

� Hill-climbing moves: In the basic version of hill-climbing, for an

integer variable x, the assignments µx+1
def

= µ[x 7→ µ(x) + 1] and

µx−1
def

= µ[x 7→ µ(x)− 1] obtained by mapping x to the successor and
predecessor of its value assigned by µ are moves from µ.

� Feasible-set-jumps: For an integer variable x, with feasibility set
feasible(x) =

⋃
i∈[0:m] Ii, and x ∈ Ij (for a given j ∈ [0 : m]), the assignments

µleft
def

= µ[x 7→ pick_value(Ij−1)], and µright
def

= µ[x 7→ pick_value(Ij+1)]
obtained by picking a value from the left and right feasible intervals of Ij
(provided they exist, i.e., respectively, that j−1 ∈ [0 : m], and j+1 ∈ [0 : m])
are moves from µ.

Our speci�c strategy of the local search algorithm is outlined in Algorithm 3.
The algorithm starts with a list of variables vars (and an associated feasible

Algorithm 3 LS main algorithm

Input: a list vars, a feasibility map feasible, an initial assign. µ0, a cost function fc
Output: a �nal assignment µ∗ with fc(µ

∗) ≤ fc(µ0)
1: µ∗ ← µ0 ▷ best assignment
2: cost∗ ← fc(µ0) ▷ best cost
3: for mode ∈ {bool-�ips, fs-jumps, hill-climb} do
4: n_vars ← 0 ▷ no. of vars visited since last improvement
5: while n_vars < len(vars) and cost∗ ̸= 0 do
6: x ← vars[n_vars] ▷ pick next variable
7: α← µ∗(x ) ▷ value assigned to x
8: while αnew ←Move.choose(x , α, feasible,mode) do
9: µnew ← µ∗[x 7→ αnew ] ▷ create new assignment
10: costnew ← fc(µnew)
11: success ← costnew < cost∗ ▷ check if the move has improved
12: if success then
13: µ∗ ← µnew ▷ update best assignment
14: cost∗ ← costnew ▷ update best cost
15: n_vars ← 0 ▷ reset no. of vars visited
16: vars.to_front(x ) ▷ move x to the front of the list

17: Move.notify(x , α, αnew , feasible,mode, success)

18: n_vars ← n_vars + 1 ▷ increas no. of vars visited
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map), an initial assignment µ0, and a cost function fc. The goal of the procedure
is to return an assignment µ∗ that improves over the initial assignment µ0 w.r.t.
the cost function, i.e. fc(µ

∗) < fc(µ0).
At the beginning, the best assignment coincides with the initial assignment

(Line 1). First, we cycle over modes (Line 3). Then, we enter in a loop over the
variables (Line 5). The loop breaks only in two cases: if all the variables have
already been visited since the last improvement (in which case, it means we have
reached a local minimum w.r.t. the current mode moves), or if the current cost
is equal to 0 (in which case it means we have found a solution). At each loop
iteration, we pick the next variable (Line 6). Here, for simplicity, we assume
that there are no �xed variables (in practice, these variables are just ignored
and treated as constants). Then, for the current variable x , we enter in a second
loop (Line 8), in which we select new values for x . These values are determined
by a move selection module, which we discuss below. The loop breaks only when
there are no more moves available. For each value, a new assignment is built by
re-assigning x to the new value (Line 9), and the cost of the new assignment
is computed (Line 10). We then check whether the current cost is lower than
the previous cost (Line 11). If so, then the new assignment becomes the best
assignment (Line 13), and x is moved to the front of the list (Line 16). If not,
then we try other moves for x , if there are any. In both cases, we notify the
move selection module whether the suggested move has led to a success or not
(Line 17). The move selection module works as following.

Boolean �ips mode. Here, the logic is rather straightforward, as there is only
one move possible per variable. Regardless of whether the move has success or
not, the cycle over moves terminates, and the algorithm proceeds with the cycles
over variables or over modes.

Accelerated hill-climbing mode. The simple hill-climbing moves presented ear-
lier, in which we add or subtract 1 to the current value, can be quite slow in
converging toward a local minimum when the search space is huge. For this
reason, we accelerate hill-climbing by keeping, for each variable, an adaptive
step_size, which is incremented or decremented according to a �xed accelera-
tion parameter acc (in our setting acc = 1.2) and on the base of the success
of previous moves. At the beginning, step_size is set to 1 (i.e., we start with
simple hill-climbing moves). At each iteration, we try four moves, correspond-
ing to adding to the current value the product between step_size and one of
the following: acc, 1

acc ,
−1
acc ,−acc. Since we are working with integers, every step

value is rounded to the nearest integer. If one of the moves has success, then
we set step_size to be equal to the best successful step (thus keeping the best
velocity). If none of the moves has success, then we stop the moves cycle, and we

set step_size to
step_size

acc (thus decelerating over this variable for future moves).

Feasible-set-jumping mode. There are two possible versions of fs-jumping: global
and local. In global fs-jumping, given a �xed variable, we try all possible jumps
over the feasibility set, i.e. we try one jump per feasible interval. While this
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may give a wide-ranging view over the feasibility set, it can also be very costly,
hence we limit global fs-jumping to one time per variable (per LS call). Local
fs-jumping, on the contrary, only explores the left and the right feasible intervals
w.r.t. to the interval that contains the current value. If one fs-jump is successful,
e.g. the one to the left interval, then we continue on that direction and explore
the interval further left. As soon as we �nd that both left and right fs-jumps do
not improve, then we stop, hence avoiding to span over all feasible intervals like
in the global fs-jumping.

5 Experiments

Implementation. We have implemented our method in the MCSat engine of the
Yices2 SMT solver, adding a module for the interaction with LS. We will denote
the version of Yices2 that makes use of LS asYices2LS and the baseline version
(without any local search) as Yices2base.

Setup. We have run our experiments on a cluster equipped with AMD EPYC
7502 CPUs running at 2.5GHz, using a timeout of 300 seconds, and a memory
limit of 8GB. We have compared the base version of Yices2 with the LS-boosted
version Yices2LS as well as with the state-of-the-art SMT solvers cvc5 [1]
(version 1.2.0), MathSAT5 [11] (version 5.6.11), and Z3 [14] (version 4.13.3).
We have also included in the comparison HybridSMT [7], which runs a portfolio
composed by the LS solver LocalSMT [6] (used as a standalone tool) and a
LocalSMT-boosted version of Z3's CDCL(T) � see also related work (Section 6).

Benchmarks. We have considered all the SMT-LIB [2] (Version 2024 [44]) bench-
marks from the QF_NIA category. This is a class of 25443 benchmarks, among
which 14990 and 5183 come with a known status of �sat� and �unsat�, respec-
tively, and another 5270 have an �unknown� satis�ability status.

Results. In the presentation of the results, we consider both a short time limit
and a long time limit. We set the short time limit to 24s, as in the respec-
tive SMT-COMP track [47], and the long time limit to 300s, due to resource
constraints. The results are shown in Table 1 and Table 2, respectively. In the
columns, we separate per benchmark family; on the rows, for each solver, we re-
port the amount of overall benchmarks solved, and, in parenthesis, the amount
of benchmarks solved restricted to sat and unsat instances, respectively. We also
include two portfolios between Z3 (resp., HybridSMT) and Yices2LS , that
work as follows: we run Z3 (resp., HybridSMT) for half of the time limit (i.e.,
12s/150s), then, if it has not terminated, we run Yices2LS for the remaining
time.

Discussion. First, we observe that, with both time limits, Yices2LS solves a
signi�cant number of benchmarks more than Yices2base. In particular, on both
satis�able and unsatis�able instances, it improves (or matches) Yices2base re-
sults over all families, except one. Improving on unsatis�able benchmarks is
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noteworthy: indeed, while, in general, local search is geared toward proving sat-
is�ability, integrating it within MCSat enables to generate better lemmas. This
is witnessed not only by the higher amount of benchmarks solved overall, but
also by the lower amount of con�icts and theory variables assignments occurred.
On unsatis�able benchmarks solved by both tools, on average (resp. median),

Table 1: Summary of results for NIA benchmarks with a timeout of 24s.
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VeryMax
7799
(5465)
(2334)

13555
(10427)
(3128)

11233
(7615)
(3618)

13695
(9461)
(4234)

14269

(10019)
(4250)

13975
(9599)
(4376)

14848
(10271)
(4577)

15428
(11105)
(4323)

calypto
171
(79)
(92)

174
(78)
(96)

168
(79)
(89)

174
(79)
(95)

174
(79)
(95)

176

(80)
(96)

176
(80)
(96)

176
(80)
(96)

ezsmt
8

(8)
(0)

8

(8)
(0)

8

(8)
(0)

8

(8)
(0)

8

(8)
(0)

8

(8)
(0)

8
(8)
(0)

8
(8)
(0)

LassoRank
97
(4)
(93)

105

(4)
(101)

105

(4)
(101)

91
(4)
(87)

96
(4)
(92)

104
(4)
(100)

102
(4)
(98)

104
(4)
(100)

Dartagnan
320
(11)
(309)

354

(10)
(344)

327
(12)
(315)

142
(1)
(141)

87
(0)
(87)

352
(9)
(343)

344
(9)
(335)

347
(9)
(338)

LCTES
1

(0)
(1)

1

(0)
(1)

1

(0)
(1)

0
(0)
(0)

0
(0)
(0)

1

(0)
(1)

1
(0)
(1)

1
(0)
(1)

MathProbl
107
(100)
(7)

93
(86)
(7)

141
(134)
(7)

122
(115)
(7)

303

(296)
(7)

118
(111)
(7)

300
(293)
(7)

305
(298)
(7)

leipgiz
72
(70)
(2)

151

(150)
(1)

114
(112)
(2)

102
(101)
(1)

111
(110)
(1)

120
(119)
(1)

119
(118)
(1)

148
(147)
(1)

UltAut23
16
(8)
(8)

10
(7)
(3)

17
(7)
(10)

7
(7)
(0)

7
(7)
(0)

21

(8)
(13)

20
(8)
(12)

9
(7)
(2)

mcm
9
(9)
(0)

56

(56)
(0)

3
(3)
(0)

6
(6)
(0)

6
(6)
(0)

5
(5)
(0)

5
(5)
(0)

46
(46)
(0)

sqrtmodinv
2
(0)
(2)

7
(0)
(7)

0
(0)
(0)

0
(0)
(0)

0
(0)
(0)

17

(0)
(17)

17
(0)
(17)

6
(0)
(6)

UltAut
7

(0)
(7)

7

(0)
(7)

7

(0)
(7)

7

(0)
(7)

7

(0)
(7)

7

(0)
(7)

7
(0)
(7)

7
(0)
(7)

AProVE
1816
(1251)
(565)

2212
(1572)
(640)

2085
(1556)
(529)

2328
(1615)
(713)

2356

(1642)
(714)

2289
(1612)
(677)

2380
(1657)
(723)

2371
(1649)
(722)

UltLasso
32

(6)
(26)

31
(6)
(25)

32

(6)
(26)

32

(6)
(26)

32

(6)
(26)

32

(6)
(26)

32
(6)
(26)

32
(6)
(26)

Total
10457
(7011)
(3446)

16764
(12404)
(4360)

14241
(9536)
(4705)

16714
(11403)
(5311)

17456

(12177)
(5279)

17225
(11561)
(5664)

18359
(12459)
(5900)

18988
(13359)
(5629)
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Yices2LS encountered 225 (resp. 4) fewer con�icts and 27826 (resp. 36) fewer
theory variables assignments than Yices2base. Note that, on average (resp. me-
dian), Yices2base encountered 1669 (resp. 458) con�icts and 79842 (resp. 10537)
theory variable assignments. These numbers show that there is a considerable
amount of benchmarks for which the number of con�icts and theory variable

Table 2: Summary of results for NIA benchmarks with a timeout of 300s.
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(79)
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175
(78)
(97)
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(79)
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(80)
(97)
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(80)
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8
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8

(8)
(0)

8

(8)
(0)

8

(8)
(0)

8
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8
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8
(8)
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8
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LassoRank
98
(4)
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106
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(102)

105
(4)
(101)

93
(4)
(89)

97
(4)
(93)

106

(4)
(102)

104
(4)
(100)

105
(4)
(101)

Dartagnan
350
(17)
(333)

369

(14)
(355)

347
(18)
(329)

311
(7)
(304)

288
(3)
(285)

368
(14)
(354)

363
(13)
(350)

367
(13)
(354)

LCTES
1
(0)
(1)

2

(0)
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1
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0
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0
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2
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1
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1
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(1)
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107
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(176)
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124
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(304)
(7)

118
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(307)
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327
(320)
(7)
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89
(87)
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156
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104
(103)
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111
(110)
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135
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134
(133)
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16
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10
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17
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7
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7
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21
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21
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10
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17
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10
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9
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9
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10
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64
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10
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0
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0
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0
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17
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(1622)
(558)

2337
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(716)
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2339
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(699)

2394
(1661)
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2387
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(731)

UltLasso
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(4550)
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(14174)
(6261)
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(11563)
(5273)

17755
(12125)
(5630)

18572
(12896)
(5676)

19644
(13059)
(6585)

20281
(13597)
(6684)

20950
(14467)
(6483)
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assignments is signi�cantly lower (note that such a lower median w.r.t. average
implies a pronounced right-skewness).

Overall, we see that, in the 24s track,Yices2LS solves more benchmarks than
any other solver, while, in the 300s track, it comes third, after HybridSMT and
Z3. The complementarity of Yices2LS w.r.t. both tools can be witnessed by the
scatter plots in Figure 3, and by the results of the portfolios in Tables 1 and 2.
Note that Z3 internally utilizes portfolio tactics that combine multiple solving
techniques sequentially (clearly observable in Figures 2 and 3). HybridSMT

runs a higher-level portfolio that combines the LS-based LocalSMT and Z3. The
results of the portfolios that include Yices2LS show that our approach brings
signi�cant diversity to the strategies already used in state-of-the-art portfolio
approaches.

SinceHybridSMT is the only other solver that � to the best of our knowledge
� leverages local search techniques for NIA, it is interesting to compare the
improvements it brings to Z3 with the improvements that Yices2LS brings
over Yices2base. We can see that, with a 300s time limit, the improvements
are comparable, as both tools solve around 800 benchmarks more than their
base solvers. With a 24s time limit, however, we see that Yices2LS is able to
solve around 700 benchmarks more than Yices2base, while, on the contrary,
HybridSMT loses around 450 benchmarks compared to Z3. Figure 2 shows
that the point at which using local search pays o� is much earlier for Yices2LS

(< 10s) than for HybridSMT (just below 100s).

Fig. 2: Plots showing the number of instances solved (x axis) within given time
in seconds (y axis) in log scale.
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Fig. 3: Scatter plots comparing Yices2LS to cvc5, HybridSMT, MathSAT5,
Yices2base, and Z3, respectively; on sat. (orange) and unsat. (blue) instances.
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6 Related work

In propositional SAT solving, local search techniques have been successfully used
to solve di�cult satis�able problems [31] as well as unsatis�able instances [45].
Recently, their tight integration in the propositional CDCL framework has been
shown to improve performance [7,8] and are now considered a key component
of state-of-the-art SAT solvers. In the context of SMT, on the other hand, the
adoption of LS is a lot less widespread.

In [22], the LS-based SAT solver WalkSAT has been used in combination with
a theory solver as an alternative to the classic CDCL(T) approach; however, the
use of local search remained limited to the Boolean level. For the theory of bit-
vectors, the idea of Boolean �ips in SAT solving has been transposed to the bit
level by introducing bit-�ips [18], possibly augmented with propagations [41].

The adoption of LS for arithmetic theories is more recent. For the theories
of Linear Integer Arithmetic (LIA) [5] and Multi-linear Real Arithmetic [34] a
critical move operation is used to change the value of a variable that appears in
a literal violated by the current assignment in order to make the literal satis�ed.
To deal with the nonlinear arithmetic constraints, the cell-jumping technique is
used, which �rst isolates the roots of a falsi�ed polynomial w.r.t. to a variable
(by �xing the value of the other variables), thus decomposing the real space into
�nitely many intervals (cells, in the CAD [12] terminology), and then tries to
satisfy the polynomial by changing the value of the variable by jumping around
these cells. This technique has been implemented in LocalSMT for NIA [6], and
as a tool in Maple [35] and on top of Z3 [46] for NRA.

Local search has also been used as a sub-routine for global search techniques,
as in the case of �oating points [19], and of NRA possibly augmented with
transcendental functions (NTA) [37,39,36]. In these works, numerical optimiza-
tion algorithms, e.g. the gradient-descent, are used to �nd local minima, while
stochastic jumping is used to move away from a local minimum in order to
explore other regions in search for a global minimum.

All the methods discussed so far for arithmetic theories are only able to prove
satis�ability; if they fail, then all the knowledge that has been acquired by the
search is lost. HybridSMT [48] addresses this issue, for the case of NIA, by
integrating LocalSMT within Z3's CDCL(T). In particular, LocalSMT takes as
input a subformula corresponding to a Boolean skeleton solution, and, if it does
not �nd an integer solution for the subformula, it returns the best assignment
found and the con�ict frequency for atoms. This information is used to improve
phase selection (i.e. Boolean assignments) and variable ordering. Although both
HybridSMT and our method share the idea of integrating LS within a reason-
ing calculus (CDCL(T) and MCSat, respectively), there are some substantial
di�erence. First, in HybridSMT, LS takes into account complete Boolean vari-
able assignments. In our framework, LS can take as input both Boolean and
theory variable assignments, either partial or complete. Additionally, while in
HybridSMT LS can only suggest assignments for (and ordering of) Boolean
literals, we extend that to theory variables as well. Moreover, there is a theory-
speci�c di�erence in our approach. LocalSMT relies on cell-jumps, which require
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to perform potentially very expensive root isolation sub-routines at every step.
In contrast, our method uses fs-jumps that rely on feasibility intervals already
maintained by the theory plugin in the MCSat framework. This eliminates the
need for additional computation and can be viewed as a lazy version of cells, pro-
gressively re�ned on-demand. Furthermore, we pair fs-jumps with hill-climbing
to move inside feasible intervals.

Most state-of-the-art solvers do not use local search for NIA problems. Bit-
blasting [20] aims at proving satis�ability by iteratively imposing bounds on the
variables and then encoding the obtained sub-formula into an equi-satis�able
Boolean formula, which is then handled by a SAT solver. In the branch-and-
bound approach [32,28] the integer domain is relaxed by allowing variables to
range over real numbers. Incremental Linearization [9,10] leverages decision pro-
cedures for LIA by abstracting non-linear multiplications with uninterpreted
functions and then incrementally axiomatize them.

7 Conclusion

In this work, we have introduced a theory-independent framework for integrat-
ing local search into the MCSat calculus. By combining local search intuition
with MCSat reasoning capabilities, our approach leverages logic-to-optimization
formalization to provide guidance to the core MCSat solver. Speci�cally, we ad-
dressed the theory of nonlinear integer arithmetic by proposing a local search
procedure based on feasibility-set jumping and hill-climbing.

We implemented our approach in the Yices2 SMT solver, and empirically
demonstrated its improvements for both satis�able and unsatis�able instances.
Our results show that the new Yices2 solver with local search compares favor-
ably and often outperforms other SMT solvers; in particular, it manages to solve
a signi�cant amount of benchmarks not solved by other state-of-the-art tools.
Moreover, our results show that the new Yices2 is able to reach solutions or
proofs more e�ciently, compared to the baseline Yices2, in terms of the number
of decisions and con�icts. Our �ndings indicate that this new approach comple-
ments existing techniques used by other solvers, as evident in the experimental
results (see virtual best and portfolio solvers in the plots and tables).

In the future, we aim to extend our approach to other theories such as �nite
�elds and bit-vectors, and conduct more comprehensive experimental evalua-
tions. Additionally, we plan to integrate this approach with di�erent caching
schemes, including value and target caches, along with periodic recaching in
MCSat [23].
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